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Abstract

Billions of web users collectively contribute to a dynamic web that preserves how infor-

mation sources and descriptions change over time. This dynamic process sheds light on

the quality of web content, and even indicates the temporal properties of information

needs expressed via queries. However, existing commercial search engines typically utilize

one crawl of web content (the latest) without considering the complementary information

concealed in web dynamics. As a result, the generated rankings may be biased due to the

deficiency of knowledge on page or hyperlink evolution, and the time-sensitive facet within

search quality, e.g., freshness, has to be neglected. While previous research efforts have

been focused on exploring the temporal dimension in retrieval process, few of them showed

consistent improvements on large-scale real-world archival web corpus with a broad time

span.

We investigate how to utilize the changes of web pages and hyperlinks to improve

search quality, in terms of freshness and relevance of search results. Three applications

that I have focused on are: (1) document representation, in which the anchortext (short

descriptive text associated with hyperlinks) importance is estimated by considering its

1
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historical status; (2) web authority estimation, in which web freshness is quantified and

utilized for controlling the authority propagation; and (3) learning to rank, in which fresh-

ness and relevance are optimized simultaneously in an adaptive way depending on query

type. The contributions of this thesis are: (1) incorporate web dynamics information

into critical components within search infrastructure in a principled way; and (2) empir-

ically verify the proposed methods by conducting experiments based on (or depending

on) a large-scale real-world archival web corpus, and demonstrated their superiority over

existing state-of-the-art.

2
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Chapter 1

Introduction and Outline

1.1 Introduction

Billions of web users collectively contribute to a dynamic web that preserves the traces

of web content creators and reflects humans’ daily lives [11, 12, 33, 57]. Representative

examples include social network sites, microblogs, wikis, video sharing sites, mashups,

folksonomies etc. In addition to these Web 2.0 application features, the whole web demon-

strates certain dynamic and collaborative evolution patterns. The incoming links pointing

to SIGIR 2011 (a conference) home page increases faster than SIGIR 2009 for now (August

2011). Dr. Brian Davison’s home page (Lehigh) in 2008 introduced him as an assistant

professor, but now that field has been updated to “associate professor”. News events,

depending on their significance, draw web users’ attention in real time—query volumes

and the news page incoming links mutually increase. Therefore, the creation, updates
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and removal of web pages and hyperlinks shed light on the quality of web content, reflect

how web users interpret changes in information sources over time, and even indicate the

temporal properties of queries. We thus naturally ask how to utilize such complementary

information to improve web search.

Web search, more specifically, retrieving web documents in the scope of this thesis, aims

to truly satisfy users’ information needs expressed through queries.1 Information seekers

usually pay much attention to results at top positions, and the quality of lower rankings

becomes less important. To select a small group of documents that mostly satisfy users’

information needs is challenging especially given the huge pool of available information on

the web. Therefore, web dynamics provides complementary information that helps further

differentiate the web pages sharing similar topics (e.g., SIGIR 2011 and SIGIR 2009 home

pages), and so enhance the rankings only generated via content-based matching.

Unfortunately, conventional belief is that existing commercial search engines typically

utilize one crawl of web content (the latest) without considering the complementary in-

formation concealed in web dynamics. Therefore, the generated rankings may be biased

due to the deficiency of knowledge on page or hyperlink evolution, and the time-sensitive

facet within search quality, e.g., freshness, has been neglected. While previous research

efforts have focused on exploring the temporal dimension in the retrieval process, few of

them evaluated their methodologies on a portion of real web with long history, and showed

1This thesis focuses on general ranking. Personalized ranking and search in social media are not in the

scope of our study.
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consistent superiority over the competitors that do not take web dynamics into account.

In this thesis, we consider the research question of how to utilize the changes of web

pages and hyperlinks to improve search quality, in terms of freshness and relevance of

search results. Based on search engine infrastructure [98], we propose to incorporate

knowledge from web dynamics into three search components: document representation—

incorporating the anchor text trends extracted from the changes of in-coming links to

better quantify anchor text importance, web authority estimation—incorporating web

freshness inferred from user maintenance activities into a semi-Markov model to demote

stale but otherwise authoritative pages, and learning to rank system—optimizing fresh-

ness and relevance by considering query differences on temporal characteristics. These

three components interweave with each other. The first and second ones respectively dis-

cuss extracting dynamic and static ranking signals that incorporate temporal information,

while the last one presents how temporal aspects of queries can influence the design of

a learning to rank system framework. To evaluate our proposed methods, comparable

experiments are conducted based on a large-scale archival web corpus collected by the

Internet Archive2 from January 2000 to December 2007.

Of course, the importance of web dynamics can be extended beyond web search. Adver-

tisement rankers have to consider the problem of balancing between multiple optimization

criteria; related search and auto-complete suggestions must provide users with fresh and

relevant alternatives to their queries; vertical search [49] ranking and triggering can be

2http://www.archive.org
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affected by temporal changes; profiling people and their reputation in social networks can

be enhanced by using their historical status and connections.

We next introduce the perspectives from which we incorporate web dynamics into

these three search components in Section 1.2.

1.2 Outline

In this thesis, we propose to utilize the changes of web pages and hyperlinks to im-

prove three search components: document representation—the creation time of anchor

text is taken into consideration when representing target page content; web authority

estimation—page and hyperlink maintenance activities are incorporated to mitigate the

problem that traditional link-based ranking algorithms usually favor old pages; and, learn-

ing to rank systems—the temporal characteristics of information needs are incorporated

into separate ranker training to better optimize freshness and relevance simultaneously.

Our key contributions are as follows.

• We propose to incorporate web dynamics into document representation, web author-

ity estimation and learning to rank systems respectively. For document represen-

tation, we are the first that consider temporal contexts of anchor text for weighing

anchor text importance. For web authority estimation, we are the first that uti-

lize web maintenance activities to bias the behaviors of random surfer models. For

learning to rank systems, we are the first that optimize freshness and relevance by

considering the temporal characteristics of queries.
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• We empirically verify the proposed methods by conducting experiments based on (or

depending on) a large-scale real-world archival web corpus, and demonstrate their

superiority over existing state-of-the-art.

For search engine engineers, our work unravels how temporal factors can be helpful in

designing an on-line search service. For academic search engine researchers, it studies more

effective ways of enhancing anchor-based retrieval models, estimating web authorities, and

optimizing multiple objectives in learning to rank.

Our work operates on the environment of an archival web corpus. Each page and

hyperlink associates its past maintenance activities, i.e., the time point on which it was

created, updated, and/or removal is known. While the accuracy of such information

strongly depends on the crawl strategies in practice (See Section ?? for details.), we in this

thesis assume that the information we utilized is entirely accurate, targeting at improving

different search components.

1.2.1 Using historical anchor text to enhance document representation

Anchor text has been recognized as useful complementary information for describing the

content of target web pages [46]. Typical ways of estimating its importance depend on

the anchor text popularity and link structures. Inferring such information from one web

snapshot may suffer from the deficiency that a single web snapshot is not able to capture

the variability of link structure. It has been shown that web pages disappear at a rate of

0.25-0.5% per week [57]. Local link structures with sudden changes might indicate link
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spam. Therefore, the influence of transitory links/pages and spam links may result in

inaccurate estimation of anchor text importance.

We propose a novel temporal anchor text weighting method to incorporate the trends

of anchor text creation over time, which combines historical weights of anchor text by

propagating anchor text weights among snapshots over the time axis. In this way, anchor

text importance can be estimated based on a more stable status— via proximity-based

density kernel functions mapping onto multiple nearby local web graphs on the time axis.

The detailed contributions are as follows.

• We propose a novel temporal anchor text weighting method to incorporate the trends

of anchor text creation over time; and

• We conduct experiments on a real-world web corpus, and demonstrate that propagat-

ing historical anchor text weights through time can achieve significant and consistent

ranking improvements over several representative variants that do not take historical

anchor text into account.

1.2.2 Quantifying web freshness for estimating page authorities

In-coming links reflect the popularity of web pages from the perspective of other pages (via

link structures). Traditional link based algorithms, such as PageRank [98] and HITS [78],

only consider one snapshot of the web graph without considering when hyperlinks were

created, updated, and removed. In this way, the authority scores are biased toward old

pages given that these pages have more time to attract in-links pointing to them, and

8



www.manaraa.com

1.2. OUTLINE

so the authoritative but stale pages may achieve higher rankings. From users’ viewpoint,

failing to promote fresh search results can negatively affect the user experience, and make

the search engine appear stale.

We propose a temporal web link-based ranking scheme, which incorporates features

from historical author activities. We quantify web page freshness over time from page and

in-link activity, and design a web surfer model that incorporates web freshness, based on

a temporal web graph composed of multiple web snapshots at different time points. It

includes authority propagation among snapshots, enabling link structures at distinct time

points to influence each other when estimating web page authority. In this way, fresh web

pages tend to attract more authority flows even if they have fewer in-coming links.

The detailed contributions are as follows.

• We propose a novel method to quantify web freshness from authors’ maintenance

activities on web content over time, from the perspectives of page freshness and

in-link freshness;

• We design a novel method to incorporate web freshness into authority propagation

to favor fresh pages;

• We explore a series of proximity-based density kernel functions to model authority

propagation among web snapshots; and

• We conduct experiments on a real-world archival web data set and show the su-

periority of our approach on ranking performance in terms of both relevance and
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freshness.

1.2.3 Optimizing freshness and relevance for learning ranking models

Freshness of results is important to modern search. Failing to recognize the temporal

aspect of a query can negatively affect the user experience, and make the search engine

appear stale. While freshness and relevance can be closely related for some topics (e.g.,

news queries), they are more independent in others (e.g., time insensitive queries). There-

fore, optimizing one criterion does not necessarily improve the other, and can even do

harm in some cases.

We propose a machine-learning framework for simultaneously optimizing freshness and

relevance, in which the trade-off is automatically adaptive to temporal characteristics of

the query. This supervised framework leverages the temporal profile of queries (inferred

from pseudo-feedback documents) along with the other ranking features to improve both

freshness and relevance of search results.

The detailed contributions are as follows.

• We propose a novel extension to an existing learning to rank framework to optimize

for both freshness and relevance;

• We introduce a new loss function that emphasizes certain query-document pairs for

better optimization;

• We investigate the correlation between freshness and relevance and compare it across

temporal and non-temporal queries; and

10



www.manaraa.com

1.3. OVERALL LAYOUT

• We introduce hybrid NDCG, a new variant of NDCG [71] that considers both fresh-

ness and relevance labels in evaluation.

We next introduce how we organize this dissertation in Section 1.3.

1.3 Overall Layout

This thesis is organized as follows.

In Chapter 2, we introduce the background of the thesis and the motivation for my the-

sis research. The thesis background includes search engine infrastructure; basic retrieval

models and field retrieval models; document representation for generating dynamic rank-

ing signals; web authority estimation for generating static ranking signals; and learning

to rank systems for combining dynamic and static ranking signals. Motivated from the

appropriate parts of these backgrounds, I present my thesis work in the following chapters

of this thesis.

In Chapter 3, I focus on the document representation, exploring the ways how anchor

text complements document content to improve search relevance. I introduce one approach

which differentiates anchor text according to the time points on which their associated

hyperlinks were created. It tries to incorporate the variance of link structure and anchor

text weights into document representation.

In Chapter 4, I focus on web authority estimation. Two approaches are proposed.

One of them aims to overcome the problem that previous approaches unfairly favor old

pages. We incorporate web freshness inferred from web content maintenance activities into
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controlling authority flow distribution, referred to as “T-Fresh”. The other one utilizes

the correlation between different types of web freshness as a confidence indicator of web

page freshness scores, referred to as “C-Fresh”.

In Chapter 5, I focus on improving learning to rank systems. The motivation comes

from the conjecture that search quality facets (i.e., freshness and relevance in our work)

correlate with each other in the way depending on queries’ (temporal) characteristics, and

so we design a learning to rank system which optimizes ranking objectives simultaneously

depending on query types. I call this system prototype “CS-DAC”.

In Chapter 5.4, I introduce the evaluation platform on which I will show the supe-

riority of the proposed system prototype “CS-DAC”. Here, we will describe (1) how we

collect queries used in ranking evaluation; (2) how we collect groundtruth on freshness

and relevance of search results; and (3) the metrics for evaluating ranking performance.

Based on such platform, I next report the ranking performance of “CS-DAC” and

compare it with the existing state-of-arts in Chapter 5.5. I also highlight important

findings that demonstrate the unique properties of our approaches.

In Chapter 6, I conclude the impacts and limitations of my thesis work. I also sum-

marize the important findings inferred from deeper analysis of experimental results, sug-

gesting their usability in different scenarios. I end by envisioning the future directions of

my thesis work.
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Chapter 2

Background and Motivation

2.1 Introduction

The main goal of search service is to improve users’ search experience by generating

appropriate web document rankings to satisfy users’ information needs. To achieve this,

main efforts focus on the search quality of results, as interpreted through specific ranking

criteria. Representative ones include relevance, diversity [1, 63, 112], efficiency [118, 120,

119], and freshness [44, ?, 50, 51]. Neglecting any one of them can negatively affect

user experience. Diversity reflects the richness of information contained in search results.

Failing to generate diverse results could make search engines provide duplicate answers.

Efficiency reflects the complexity of ranking models. It is known that more complicated

models may generate better document rankings at the price of spending more time, and

too much waiting time may hurt user experience. Freshness quantifies how fresh the search
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results are. Failing to generate fresh results makes search engines look stale.

To leverage all search criteria within one ranking list is not a trivial task. The first

problem is to correctly clarify the definition of each criterion, which sometimes even vary

with query types. Take freshness as one example. Freshness can be interpreted in different

ways. For certain temporal queries such as breaking news, freshness is more meaningful

when the actual page content reflects new information. Whereas, for non-temporal (time-

insensitive) queries, it makes more sense to interpret freshness as the recency of page

maintenance with respect to the time point of generating ranking lists (suppose web pages

contain such information). These two interpretations for freshness may be correlated to

some extent but are not the same, considering the pages updated recently tend to record

fresh information. One may notice that both explanations of freshness can influence user

search experience.

Given a clear definition of each facet, the next problem is to optimize ranking by

considering the balance among multiple search facets. It is not trivial since different

ranking criteria may correlate with each other, depending on query types. Take the

relationship between freshness and relevance as an example. For certain temporal queries

such as breaking news, relevance and freshness are highly correlated. As a result, a ranker

optimized for returning fresh documents may produce satisfactory results. However, for

queries that are not usually time-sensitive (e.g., “facebook”, “machine learning”), paying

too much attention to freshness may significantly hurt ranking effectiveness in terms of

relevance. As a result, a ranker that optimizes either freshness or relevance only may not
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be flexible enough to deal with the temporal characteristics of queries effectively.

While improving search quality is from users’ viewpoint, engineers may focus on im-

proving each individual search modules for satisfying users’ search experience from sys-

tem’s viewpoint. In the following sections, we focus on search systems and their main

components. We start by introducing the high-level search engine infrastructure, and

then move to each individual component. Here, the main search components include doc-

ument relevance estimation, web authority estimation, and learning to rank (i.e., using

machine learning techniques for ranking documents). We next review how prior work

incorporate temporal information of web content, hyperlinks, and queries into improving

search quality for each component.

2.2 Search Engine Infrastructure

Brin and Page [22] in 1998 introduced the high-level architecture of Google, as a prototype

of modern search engine systems. It is distinguished from traditional retrieval systems

by two main points: (1) hyperlinks between web pages are utilized to differentiate pages

complementing content-based matching; and (2) anchor text is used to enhance the content

of target web pages.

Nowadays, a web search system mainly includes a crawler, an indexer, a ranker learning

module, and a query processor. A crawler is a means of providing up-to-date copies of

web pages by following hyperlinks according to a certain strategy (e.g., breadth-first).

This process aims to support index for page content for fast searches. Usually, web pages
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Figure 2.1: High-level web search system architecture.

are first crawled by a set of distributed crawlers, and then are stored onto the servers

responsible for storing web content. The list of URLs to crawl is generated from the URL

server, and sent to individual crawlers. Each page is assigned one docID.

An indexer parses web pages, recording term occurrence, fonts, positions, which are

used to generate a partially sorted inverted index. The indexer also functions to parse

the out-going links within web pages and their associated anchor text, and build up the

web link graph. The URL resolver processes the parsed out-going links, and normalizes

their format to match the docIDs in existing systems. This process generates the inverted

indexes for all terms in the vocabulary, according to page content. It also records the

connectivity (via hyperlinks) and descriptive context (via anchor text) between web pages.
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These outputs facilitate the system to extract ranking signals characterizing document

and/or query properties for better estimating document relevancy..

A ranker learning module trains rankers by using multiple ranking signals, including

but not limited to those from link structures (e.g., PageRank) and page content (e.g.,

relevance scores generated by using traditional retrieval models). This step is typically

done off-line. First, a set of training query-document pairs are selected. Second, how

relevant a document is to a given query is judged by human editors. Third, ranking signals

associated with each query-document pair are extracted. Fourth, rankers are trained

by using relevance judgements and the ranking features associated with query-document

pairs. It outputs ranking models for generating the rankings of new queries.

Given a new query (submitted by some search engine users), a query processer first

modifies it into the format that fits the search system. Such operations include query

parsing and stemming, query normalization, query rewriting and expansion, etc. This

process may also involve profiling queries’ characteristics, e.g., temporal characteristics.

Such query related information is then used to compute dynamic (e.g., content-based)

ranking features for web documents. Selecting the most suitable ranking model, the

system finally generates the document rankings for that query. It was worthwhile pointing

out that users’ activities on search engines are recorded into query logs and are analyzed

to enrich the preference of individual users, interpret users’ intent, and infer document

relevancy. Unfortunately, query log mining and analysis are out of the scope of this thesis.

Given this high-level system organization, we now consider how to incorporate web
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Table 2.1: Notations in retrieval models (Sections 2.3 and 2.4).

Notation Meaning

tf(w, d) the frequency of term w in document d
dfw the document frequency of term w
N the total number of documents in the corpus
q the term importance vector representing query q
d the term importance vector representing document d
|d| the document length
avdl the average of document length over all documents

tf(w, C) the frequency of term w in the corpus
|C| the total number of terms in the corpus

tf(w, fi, d) the frequency of term w in field fi of document d
|d(fi)| the length of field fi of document d
avdl(fi) the average length of field fi over all documents

dynamics into the modules of estimating anchor text importance, computing web authori-

ties, and training ranking models respectively. In the remainder of this chapter, we review

previous research work on improving each of these modules. We start by introducing the

general background of each individual module, and then present how prior work utilized

web dynamics to improve these modules.

2.3 Basic Retrieval Models

Traditional information retrieval studies content-based ranking signals for search systems,

which captures the semantic matchability between queries and documents. We start by

introducing some notations in Table 2.1.
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2.3.1 Similarity-based models

Boolean retrieval models

The idea of automatic retrieving from stored knowledge dates back to 1945 [27]. Early

IR systems are boolean systems, in which users express their information needs through

complex combinations of the operators, such as “AND” and “OR”. While some users

may appreciate control in expressing their information needs in the retrieval process,

for many users, it is difficult to form the most accurate query to represent their needs.

In addition, such systems usually generate document rankings by factors unrelated to

relevance, such as the creation date and the alphabetical order of author names. Compared

with boolean systems, ranked retrieval systems demonstrate their superiority in the sense

that documents are ranked by their relevance, potentially better serving users’ needs

through further differentiation between documents. It is especially important for modern

web search given the huge information pools on the web.1

Vector space model (VSM)

For ranked retrieval systems, the question comes to estimating document relevancy for a

given query. One of the earliest and representative statistical retrieval model is Vector

Space Model (VSM) [111]. It represents each document or query as a vector of terms, with

a weight indicating the importance of each term with respect to the document or query

1Previous work has well recognized that document relevancy to the query is an important factor influ-

encing users’ satisfaction [88].
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individually. To generate document rankings, two critical problems are: (1) estimating

individual term importance for documents or queries; and (2) quantifying the similarity

between each pair of queries and documents.

To solve the first problem, VSM operates on the bag-of-words model, i.e., every doc-

ument and/or query is represented as a set of terms which are independent of each other

(i.e., not considering term context). The term weighting strategy captures two heuristics:

(1) documents that have more query term occurrence tend to be more relevant; and (2) if

the total number of documents that contains a target term is large, the term importance

should be deemphasized since such terms are less discriminative. These two points can be

further captured by term frequency (TF) and inverse document frequency (IDF). Previous

work called this weighting strategy TF-IDF term weighting, defined as:

TF -IDF (w, d) = tf(w, d)× log
N

1 + dfw
(2.1)

To solve the second problem, the Vector Space Model operates on document similarity

theory, that is, the matchability between query and document is measured by the angle

of their term weight vectors, more specifically, cosine similarity, defined as:

cos θq,d =
d · q

‖d‖ · ‖q‖
(2.2)

In summary, similarity-based models such as the Vector Space Model generate document

rankings based on the similarity between documents and the query. Such similarity is

computed based on the term vectors representing the query and the documents respec-

tively.
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2.3.2 Statistical retrieval models

More recent research focuses on interpreting document relevancy in a probabilistic manner,

among which an important family of probabilistic retrieval models follows the Probabilistic

Ranking Principle (PRP) [108, 73, 105]. The short description of PRP is that if retrieved

documents are ordered by decreasing probability of relevance on the data available, then

the retrieval system’s effectiveness is the best that can be obtained from the data. The

relevance estimation of one document is independent of other documents.

Two representative branches of probabilistic retrieval models are BM25 [107] and lan-

guage models [88]. BM25 incorporates one hidden binary variable (referred to as “Elite-

ness”) associated with each term-document pair, and the estimation of document relevancy

directly depends on these “Eliteness” variables. The model assumes the term frequency

follows a 2-Possion distribution, which results in a non-linear term frequency component

in the term weighting function. It is defined as:

BM(q, d) =
∑

w∈q

tf(w, d)

k1((1 − b) + b |d|
avdl

) + tf(w, d)
︸ ︷︷ ︸

log
N − dfw + 0.5

N + 0.5︸ ︷︷ ︸
(2.3)

TF component IDF component

where k1 and b are free parameters. Equation 2.3 demonstrates that BM25 is composed

of term and document frequency components, which is consistent with the spirit of tf-idf

term weighting strategy in Section 2.3.1. Note that more complex BM25 versions differ on

the IDF component (i.e., using Robertson-Spark-Jones model [109]) which further relies

on relevance feedback.
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For language models, the documents are ranked by the probability of generating query

terms. Language models assume that each document (viewed as a bag of words) draws

from a multinomial distribution over terms, and so the main research efforts focus on how

to infer such a distribution from each document for better retrieval. To achieve this, one

natural way is the query likelihood model, defined as:

p(q|d) =
∏

w∈q

p(w|d) =
∏

w∈q

tf(w, d)

|d|
=rank

∑

w∈q

log
tf(w, d)

|d|
(2.4)

However, query likelihood model fails to provide the generative probability estimation for

the terms not appearing in the documents (i.e., “zero probability” and “term sparsity”

problems).

To overcome this deficiency, researchers have proposed a variety of smoothing strate-

gies. Representative ones include Jelinek-Mercer (JM) smoothing and Dirichlet (Dir)

smoothing [88]. These smoothing approaches benefit the generative probability estima-

tion in that (1) they make the generative probability estimation more discriminative; and

(2) they help achieve optimal performance for verbose queries through modeling query

noise [136]. Jelinek-Mercer smoothing linearly interpolates background probability into

modeling each individual document, defined as

p′(w|d) = (1− λ)p(w|d) + λp(w|C) (2.5)

where p(w|d) is the probability generated from document d using query likelihood model,

and p(w|C) is the probability generated from the whole corpus (background), and λ is a

parameter in [0, 1], controlling the trade-off of these two portions. Dirichlet smoothing uses
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a dirichlet prior to smooth the multinomial probability generated from query likelihood

model, defined as:

p′(w|d) =
tf(w, d) + µp(w|C)

|d|+ µ
(2.6)

=

tf(w,d)+µp(w|C)
|d|+µ

µp(w|C)
|d|+µ

×
µp(w|C)

|d|+ µ

=rank log [1 +
tf(w, d)

µ

|C|

tf(w, C)
]− log(|d|+ µ) + log tf(w,C)

where µ is the smoothing parameter. Compared with JM smoothing, Dirichlet smoothing

takes document length into consideration, penalizing longer documents. Other probabilis-

tic retrieval models include the divergence from randomness model [6] and the axiomatic

approach to retrieval [55]. It is worthwhile pointing out that all these models are based

on the bag-of-words model.

2.4 Field Retrieval Models

We reviewed several probabilistic retrieval models. One may notice that these models

treat the terms in documents in the same way without considering the document fields in

which terms appear. Here, document fields can include but not limited to title, heading,

body, anchor text. Different document fields have different importance in estimating

document relevancy. One example is that terms in the title field tend to better focus on

the main topic of the document than the document body field. As a result, neglecting

to differentiate document fields hurts the accuracy of document relevance estimation. To

address this problem, researchers extended retrieval models to adapt multiple document
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fields. Representative models include BM25F [106] and field language models [88].

BM25F is the version of BM25 extended to apply to multiple document fields. The

main idea is that the term frequency is computed by accumulating across all document

fields, defined as:

BM25F (q, d) =
∑

w∈q

t̂f(w, d)

k1 + t̂f(w, d)
log

N − dfw + 0.5

N + 0.5
(2.7)

where t̂f(w, d) is the normalized term frequency weighted over all fields, given by

t̂f(w, d) =
∑

fi={anc,doc,...}

wt(fi)
tf(w, fi, d)

1 + bfi(
|d(fi)|
avdl(fi) − 1)

(2.8)

where wt(fi) is the trade-off among different document fields. To estimate document

relevancy, the parameters wt(fi), bfi and k1 can be learned, driven to optimize ranking

metrics such as mean average precision.

Field language models are the version of language models extended to multiple docu-

ment fields. Its main idea is that the probability of generating a query term is a mixture

(linear combination) of the probabilities generated from each individual document field,

defined as:

p′(w|d) =
∑

fi={anc,doc,...}

w(fi)p′(w|d, fi) (2.9)

where
∑

fi={anc,doc,...} w(fi) = 1. p′(w|d, fi) can be estimated by using smoothing strate-

gies, such as JM smoothing or Dirichlet smoothing as shown in Equations 2.5 and 2.6.

It is worthwhile pointing out that the focus of our work is to better weight the relative

importance among multiple anchor texts for each page, so that field retrieval models

perform better when using anchor text as one type of field in retrieval.
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Figure 2.2: An example of anchor text on the web (The text within the red frame).

2.5 Enhanced Anchor Text Representation

We reviewed main statistical retrieval models and how they extend to multiple document

fields. In this section, we focus on the anchor text field and review previous work on how

it can benefits search relevance.

What is anchor text? When a web designer creates links pointing to other pages, she

usually highlights a small portion of text on the current page, aiming to describe target

page content or functionally link to target pages (e.g., “Click here”, “Last page”), and so

facilitate visitors navigating to other information sources. Such highlighted text is referred

to as anchor text. Figure 2.2 shows one example.
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Why is anchor text important? Anchor text has been widely used in commercial

search engines. Brin and Page [22] recognized the importance of anchor text to be as-

sociated with the page to which a link points. Representative research branches studied

anchor text from two perspectives. One of them is to explore anchor distribution for better

understanding of queries. Eiron and McCurley [53]’s work, which shows the properties of

anchor text in a large intranet are similar to real user queries and web page titles, falls

into this category.

More recent research focused on the other perspective, that is, using anchor text

to enhance document representation for retrieval. Previous work has studied how to

utilize anchor text for improving search relevance. [40] is among the earliest, in which

the authors demonstrated the effectiveness of anchor text for answering the information

need of finding specific web sites. The following work on using anchor text to improve

search falls into three categories. One of them is to connect query intent with anchor

text distribution on the web [82, 80, 60]. Their observation is that anchor text containing

navigational query terms tends to have more skewed anchor-link distribution. It benefits

web search in that we can use anchor text to customize ranking treatments for queries

with different types of intent. The second category focuses on solving the anchor text

sparsity problem [91, 132], i.e., relatively few web pages have considerable amount of

anchor text associated with them. The reason is that the number of page in-coming

links follows power law distribution [9]. The effort within this category is to incorporate

appropriate complementary anchor text to enrich existing anchor text representation. The
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third category focuses on intelligent ways of anchor text importance estimation. Dou et

al. [52]’s work that incorporated where source and target pages are from falls into this

category.

However, we are not aware of any existing approach that smooths anchor text by its

historical context to enhance document representation at the current time point. This dis-

tinguishes our proposed method from previous work. We will present how we incorporate

historical anchor text context into anchor weighting for retrieval in Chapter 3.

2.6 Temporal Dynamic Ranking Signals

From Section 2.3 to Section 2.5, we reviewed some classical information retrieval techniques

that estimate document relevancy with respect to queries. These techniques are only based

on the statistics of term occurrence, and other aspects of queries and/or documents may be

inevitably neglected. In this section, we review how previous work utilized the temporal

characteristics of queries and documents to measure their temporal matchability. This

further results in a series of temporal dynamic ranking signals, used as complementary

indicator of how much documents are relevant with respect to queries. The research efforts

on exploiting temporal signals that capture the dynamics of queries, web pages, hyperlinks,

and user interaction to improve search quality fall into three categories.

The first category is to understand the temporal dynamics of information needs ex-

pressed through queries [81, 103]. The interpretation of queries may vary over time, and

this directly influences the best answers to these queries. For many of the queries that
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correspond to events, the best answer may change over time (e.g., the latest SIGIR con-

ference home page for the query “sigir conference”). In more extreme cases, the major

intent behind the same query can temporally vary; for instance, the query “US open”

is more likely to be targeting the tennis open in September, and the golf tournament in

June. Kulkarni et al. [81] referred to this class of temporally ambiguous queries as shift

topics. This observation inspires the ranking specialization that enables separate ranking

treatment for different types of queries, which we will review in Section 2.11.

The second category is to characterize the temporal properties of web pages or terms.

Motivated by the observation that the terms within each individual document demon-

strates diverse stability, (i.e., the stability of term importance at different time points

is diverse for documents) Elsas and Dumais [54] incorporated the dynamics of content

changes into document language models and showed that their enhanced representations

can improve retrieval effectiveness on navigational queries [24]. Their essential idea is

that the terms with diverse variability contribute document relevancy in a different way.

Compared with [54], Dong et al. [51] focused on the temporal properties of web pages.

The authors used Twitter data to detect fresher documents for promoting their rankings.

This family of work aims at directly generating ranking features.

The third category focuses on incorporating temporal factors into traditional retrieval

models [121, 122, 76, 99, 13, 45, 74, 83, 90]. Typically this includes: (1) profiling query

temporal characteristics, e.g., generating a temporal distribution over pseudo-feedback

documents or based on query popularity over time [121, 122, 99, 45, 74, 83, 90]; and (2)
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emphasizing documents whose temporal characteristics are close to the query’s temporal

profile, e.g., enhancing document representation by adding temporal dimension and then

incorporating temporal matching into the search process.

2.7 Web Authority Estimation

We reviewed previous work on retrieval models (Section 2.3 and Section 2.4), the ways of

using anchor text to enrich document representation (Section 2.5), and the ways of incor-

porating web dynamics into dynamic ranking features (Section 2.6). These portions aim

at producing dynamic ranking features used by search engines. In this section, we move

to the generation of static ranking features that are independent of queries. Link analysis

algorithms are one group of representative approaches for this purpose. Link analysis

methods aim to compute web authority that measures the quality of web content, and so

provide complementary information that differentiates web pages sharing similar content.

In this way, the rankings generated by content-based matching can be further enhanced.

Web authority estimation can be described as a stochastic process whose behavior depends

on the link structure of the web. Representative approaches include PageRank [98] and

HITS [78]. The underlying assumption is that pages give recommendations (distribute

their authority) to the ones to which they point2. We start by introducing some notations

in Table 2.2.

2For HITS, pages give recommendations to the ones pointing to them (the ones they point to) for being

a hub (an authority). Authority and hub scores reinforce with each other via hyperlinks.
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Table 2.2: Notations in web authority estimation (from Section 2.7 to Section 2.9).

Notation Meaning

O(p) out-degree of page p
I(q) in-degree of page q
N the total number of pages on the web
d the probability of a random jump in the random surfer model

A(p) the authority score of page p (HITS)
H(p) the hub score of page p (HITS)
p → q there is a hyperlink pointing from page p to page q
f(p) the “freshness” function of the page p (T-Rank)
f(p, q) the “freshness” function of the hyperlink from page p to page q (T-Rank)
a(p) the “activity” function of page p (T-Rank)
a(p, q) the “activity” function of the hyperlink from page p to page q (T-Rank)

The PageRank algorithm operates on a random surfer model that simulates a Markov

chain. Consider a surfer on the web. Suppose she is currently on page A, at the next

step, she can choose to follow one of A’s outgoing links to reach a page or randomly jump

to any one page on the web. The PageRank score is computed by the probability of this

surfer reaching a page. It is defined as follows:

PR(q) = d
∑

p:p→q

PR(p)

O(p)
+ (1− d)

1

N
(2.10)

where O(p) is the out-degree of page p, and N is the total number of pages on the web.

Such a model simulates a Markov chain, i.e., each web page is one state, and the transition

between states is determined by the link structure (out-degrees) and damping factor d. The

PageRank score is the stationary probability on each state. While the PageRank scores

compromise the principle eigenvector of the transition matrix determined by link structure,

faster PageRank computation is proceeded through iterative power methods [48, 10].

The HITS algorithm assumes each web page has two roles, i.e., as an authority and
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a hub. A good hub points to good information resources. A good authority contains

good information, which is pointed to by good hubs. The HITS algorithm operates in a

recursive way, in which hubs and authorities reinforce each other, defined as

A(q) =
∑

p:p→q

H(p)

O(p)
(2.11)

H(p) =
∑

q:p→q

A(q)

I(q)
(2.12)

In each iteration, we normalize the authority (hub) scores over all pages, so that their sum

equals 1. This process finally converges, and the pages are ranked by their authority or

hub scores depending on search tasks.

More recent link analysis methods incorporate additional information to control the

authority flow between web pages. The purpose is to improve the rationality of their

original assumption. Two representative perspectives are incorporating the (1) topicality

and (2) temporality of web pages and hyperlinks into web authority estimation. We now

review previous work on topical link analysis and temporal link analysis in Section 2.8

and Section 2.9 respectively.

2.8 Topical Web Link Analysis

Page topicality is important to influence the authority distribution among web pages. The

underlying assumption is that the recommendation from topically similar pages receive

more credit. The Intelligent Surfer model (IS) is among the earliest work, in which the

random surfer prefers more similar pages to jump to. However, the expense of computing
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page-page similarity prevents it from being applied to large-scale web graphs. Haveliwala’s

topic-sensitive PageRank [68] is a milestone in this direction. It is efficient in the ways that

(1) each page is represented by its topical distribution; and (2) the topic-oriented random

surfer models are computed over the web graph. More recent work [94, 95, 96, 93, 43]

followed this direction and demonstrated that finer-grained topic-sensitive authority dis-

tribution further improves the effectiveness of web authority estimation on ranking perfor-

mance. These works also demonstrated that topical link analysis can benefit web mining

tasks, including web community discovery [93], web spam classification [101], question

answering systems [69], and expert finding [130].

2.9 Temporal Web Link Analysis

One may notice that traditional link analysis approaches estimate web authority by using

one snapshot of link structure. And so, they may suffer from unfairly favor old web pages

since they have longer time to appeal in-coming links to point to. Previous work on

mitigating this problem [133, 35, 8, 15, 14, 129, 2, 85, 16] follows two branches. We now

review them both.

Using web temporal properties

One branch incorporates the time-related properties of web pages into authority esti-

mation. Yu et al.’s work in [133] was among the earliest ones, in which the authors

incorporated the paper age into quantifying paper authority to improve academic search.
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In addition to utilizing paper citations, the authors modified PageRank by weighting each

citation according to the citation date. The authors referred it as TimedPageRank

(TPR), defined as:

PR(q) = d
∑

p:p→q

wpPR(p)

O(p)
+ (1− d)

1

N
(2.13)

Compared with Equation 2.10, every page associates with a decay factor wp, which is an

exponential function of the age of paper p. In this way, the citation influence decays over

time. However, this work only associated one type of activity, i.e., link (citation) creation,

into link analysis in the scenario of academic search. Similar in spirit with Yu et al.’s

work [133] but implemented differently, Amitay et al. [8] credits the links pointed from

fresh pages. Their work attached a timestamp to each link, approximating the age of the

page’s content and gave bonus only to the links from fresh pages, rather than combining

the freshness of the page itself when estimate web page authority.

Berberich et al.’s work [16] focused on temporal aspects of both web pages and links in

web search via the web dynamics from page and link creation, modification and deletion.

They assumed users are equally interested in recency of information, in addition to the

quality. They proposed to use “freshness” and “activity” to convey whether a page is up

to date with respect to user’s temporal interests and the frequency of changes respectively.

These two aspects mutually control the random surfer’s behavior. The transition matrix

is defined as:

t(p, q) = wt1 ·
f(q)∑

q′:p→q′ f(q
′)
+ wt2 ·

f(p, q)∑
q′:p→q′ f(p, q

′)
(2.14)
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+wt3 ·
avgp′:p′→qf(p

′, q)∑
q′:p→q′ avgp′:p′→q′f(p′, q′)

+wt4 ·
a(q)∑

q′:p→q′ a(q
′)
+ wt5 ·

a(p, q)∑
q′:p→q′ a(p, q

′)

+wt6 ·
avgp′:p′→qa(p

′, q)∑
q′:p→q′ avgp′:p′→q′a(p′, q′)

where f(∗) and a(∗) are the “freshness” and “activity” of pages or hyperlinks functioning

on web dynamics, and
∑6

i=1wti = 1 are the parameters controlling the tradeoff among

different portions. This approach is referred to as T-Rank. However, due to the definition

of “freshness” and “activity” functions, the activities occurring at different time points

are not distinguished as long as they were all in the period of users’ temporal interests,

which could span wide ranges.

Our work differs from prior work in two ways. First, we model the web freshness from

two different perspectives by building temporal link profiles and temporal page profiles

from multiple types of activities over time. Second, the influence of activities on web

freshness decays over time. We will present our detailed methodology in Chapter 4, and

compare with TimedPageRank and T-Rank in Chapter 5.5.

Using web temporal trends

The other branch which incorporates temporal factors directly utilizes or mines trends

from multiple snapshots of the archival web [14, 15, 129, 85]. Motivated from Cho et al.’s

observation that the number of page in-coming links increases exponentially over time [35],

Berberich et al. [14] analyzed the potential of page authority by fitting an exponential

model of page authority. Its hypothesis is that the success with which web pages attract
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in-links from others in a given period becomes an indicator of the page authority in

the future. The approach requires an archival publication corpus which contains multiple

snapshots of publication citation networks at different time points. Three critical steps are

as follows. First, compute the PageRank scores of publications within each snapshot using

Equation 2.10. Second, normalize PageRank scores by dividing them by the minimum

authority score in the same web snapshot, so that the minimum normalized PageRank

score of the page in any snapshot equals 1 [15]. The purpose of this step is to make

PageRank scores within different snapshots comparable to each other. Third, fit the

normalized PageRank score series of each individual publication into an exponential model.

The parameter that controls the exponential model growth rate is used as an indiction of

publication potential instead of PageRank score. The authors referred this approach as

BuzzRank.

Yang et al. [129] proposed a new framework which utilizes a kinetic model to explain

the evolution of page authority over time from a physical point of view (referred to as

TemporalRank). Page authorities are viewed as objects subject to both “driving force”

and “resistance”, and so page authority at any time point can be a combination of the

current authority score resulting from “driving force” and the decayed historical authority

score from “resistance”. This process finally results in a decayed accumulation of historical

authority scores based on past web snapshots, defined as:

TRt(i) = e−
λ
m
k (t = 0) (2.15)

TRt(i) = TRt−1(i) +
η

m
PRt(i)e

− λ
m
(k−t) (t = 1, . . . , k − 1)
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TRk(i) = TRk−1(i) +
η

m
PRk(i)

where λ, m, and η are model parameters controlling the temporal decay, PRt(i) is the

PageRank score of page i at time point t, and k is our interested time point. Empirical

experiments demonstrated that authority estimation can benefit from increasing use of

archival web content. However, one may notice that this approach did not consider the

accumulation of incomparable authority scores caused by an inconsistent number of pages

in distinct snapshots.

Other than web search, the idea of propagation of authority flows among different

snapshots has been found in some other domains, such as social network analysis. Li and

Tang [85] modeled the decayed effects of old publications in expertise search by allowing

authority exchange only between successive snapshots of the time-varying social networks.

This approach is referred to as T-Random.

Our work differs from these approaches in two ways. First, in our method each page

in any snapshot is directly influenced by the same page in all the snapshots in a one-step

transition decayed by the difference in snapshot times. This process captures a compre-

hensive interaction between pages at different time points naturally. Second, we propose

and evaluate a series of proximity-based kernel functions to control the authority propa-

gation among multiple snapshots. Again, we will compare our approach with BuzzRank,

Temporal-Rank and T-Rank in Chapter 5.5.
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2.10 Learning to Rank for IR

We reviewed previous work on retrieval models and web authority estimation. These

research directions aim to generate ranking signals for the effective ways of differentiat-

ing between web pages. In this section, we focus on learning to rank. It studies how

to learn effective ranking models that can leverage the relative importance of different

ranking signals by using machine learning techniques. Compared with traditional ranking

approaches, learning to rank has some advantages: (1) automatically tuning parameters;

(2) combining multiple sources of evidence; and (3) avoiding over-fitting.

The standard data set is composed of a large number of queries. Each query is associ-

ated with multiple documents and their relevance labels (relevance judgements). The main

goal of learning to rank is to learn the ranking model which achieves the best performance

on certain ranking metrics, which are computed based on the consistency between the

ranks of documents and the query-document relevance judgements. Here, representative

relevance judgements are binary judgements (relevant vs. irrelevant), multiple-scale rat-

ings (e.g., perfect>excellent>good>fair>bad), and/or judgements on preferential query-

doc pairs (e.g., For query q, the human editor prefers document A over B.) Representative

ranking metrics are MAP (mean average precision), NDCG (normalized discounted cumu-

lative gain), MRR (mean reciprocal rank), and etc [88]. These ranking metrics are usually

the average performance over all queries, are sensitive to the positions of documents in the
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Figure 2.3: Framework of learning to rank for IR.

list, and are non-smoothed measures3. The framework of learning to rank for information

retrieval is shown in Figure 2.3. Its process is: (1) the learning to rank system is trained

by minimizing the loss from inconsistency between prediction and ground truth based on

the training data set; and (2) the learned models are deployed into the ranking system to

generate document rankings for unseen queries.

Three representative learning to rank approaches are: (1) pointwise approaches [92, 84];

(2) pairwise approaches [72, 58, 61, 26, 117, 137, 138, 38]; and (3) listwise ap-

proaches [25, 127, 134, 116, 131, 102, 29, 126]. Pointwise approaches reduce the document

ranking problem to regression or classification on single documents. One representative

3We will introduce ranking evaluation metrics in Section 2.13.
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Figure 2.4: Transformation of pairwise learning problem.

example of conversion from classification to ranking is as follows. First, we train an in-

dividual classifier for query-document pairs with the same relevance judgements. Second,

we convert the classifiers’ outputs to probabilities by using logistic regression. Third, we

convert the classification problem into ranking problem by: Si =
∑K−1

k=0 pi,k · k. Empir-

ical experiments demonstrate that converting the ranking problem to multiple ordinal

classification problems outperforms converting it to the multiple-class classification prob-

lem, which further outperforms casting it to regression problem. In this way, pointwise

approaches assume that relevance judgement is absolute, and query-independent in the

sense that documents associated with different queries are put into the same category as

long as they have same relevance scores, for training classifiers. As a result, ignoring the

unique characteristics of queries may hurt ranker effectiveness. For example, the rele-

vancy scores estimated by language models are much larger for popular queries than other

queries on average.
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Pairwise approaches mitigate the deficiencies of pointwise approaches. They cast learn-

ing to rank as a preferential relation learning problem. Given a query and a pair of

associated documents, if one is more relevant than the other, then it is boosted in the

training process to get a higher rank. Representative pairwise ranking approaches include

RankSVM [72], RankBoost [58], RankNet [26], FRank [117], and etc. RankNet and FRank

are similar in the sense that they are trained by minimizing the loss defined based on the

consistency between the predicted probability of preferring one document over the other

and the groundtruth preference. Their difference is the loss function, i.e., RankNet opti-

mizes cross entropy defined as Cij = C(oij) = −P ij logPij − (1 − P ij) log(1 − Pij) while

FRank optimizes fidelity defined as Fij = F (oij) = 1 − (
√
P ijPij +

√
(1− P ij)(1− Pij)),

where Pij is the groundtruth probability (1 if prefer doc i over j and 0 if prefer doc

j over i), and P ij is the estimated probability of preferring doc i over j, defined as

P ij =
exp(f(xi)−f(xj))

1+exp(f(xi)−f(xj))
. While RankNet has been widely deployed in real systems, FRank

has shown its superiority on several scenarios. RankBoost and RankSVM utilizes Ad-

aBoost [59] and SVM [39] respectively to perform pairwise classification, and so inherit

their theoretical properties. While these pairwise approaches attempt to predict the rela-

tive preference between paired documents and no longer assume absolute relevance judge-

ments, one may notice that the unique properties of ranking in information retrieval have

not been fully modeled, i.e., there exists a gap between the predefined loss function and

the ranking evaluation metrics.

The appearance of listwise approaches help mitigate such a gap. The reason is that

40



www.manaraa.com

2.10. LEARNING TO RANK FOR IR

the loss functions of listwise approaches are defined based on the consistency between the

predicted document permutations and the ideal ones (based on relevance judgements),

and ranking performance metrics, e.g., NDCG and MAP, are usually position-sensitive

and defined based on a document list/sublist. Such reasoning suggests the two listwise

directions: (1) directly optimizing IR evaluation metrics; and (2) defining listwise loss

functions. Both of them face the challenges that IR evaluation metrics are non-smooth

and are not differentiable, while most optimization techniques are designed for smooth and

differentiable objective functions. To solve this problem, the first direction draws from (1)

first convert the problem to another smooth and differentiable case, and then optimize it

instead [127, 134, 116]; or (2) use optimization techniques designed for non-smooth and

non-differentiable ranking scenarios [25, 131]. The second direction draws from the unique

properties of ranking for information retrieval [102, 29, 126]. Representative properties

include the relationship between the loss and ranking metrics, and the unbalanced popu-

larity of URLs associated with the same training queries. Compared with pointwise and

pairwise approaches, listwise approaches benefit ranking performance in that they directly

optimize for ranking evaluation metrics.

So far we have reviewed three representative categories of learning to rank algorithms.

It is worthwhile pointing out that while the state-of-the-art technologies show very close

quality of the predictions from each other (suggesting the technique of learning to rank is

relatively mature), new challenges are still not fully explored. Chapelle et al. [31] summa-

rized some of these challenges, which include learning theory for ranking, online complexity
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versus accuracy, sample selection bias, and large-scale learning to rank. Among these chal-

lenges, one important challenge is recency ranking [50, 51], i.e., how to rank for temporal

queries, balancing the trade-off between freshness and relevance of top search results. Its

main problems include the adaptation of ranking models, given that the best trade-off

between freshness and relevance may be sensitive to queries’ temporal characteristics.

To mitigate this, previous work has utilized the techniques of ranking specialization and

multi-objective optimization. In the reminder of this chapter, we review these two tech-

niques in Sections 2.11 and 2.12 respectively, drawn from which we propose our learning

to rank for freshness and relevance work in Chapter 5.

2.11 Ranking Specialization

In traditional learning to rank approaches, information about the query type was ignored

in ranking, which limits the effectiveness of ranking functions. For instance, naviga-

tional queries target specific websites, while informational queries have a broader range

of relevant answers. Hence, their ranking models could be optimized in different ways

depending on the query intent [75]. Query-dependent loss/ranking functions were intro-

duced to address these issues [19, 20, 62]. The general idea is to adopt a query-dependent

loss based on the query type (class). Geng et al. [62] proposed a k-Nearest Neighbor

based method which trains a query-dependent ranking function for each query based on

its nearest neighbors in the training set. Bian et al. [20] achieved better results by learning

both multiple ranking functions (by minimizing query-dependent ranking risks) and query
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categorization (navigational, informational, transactional) simultaneously. Although the

query-dependent loss function has been found superior to the query-dependent ranking

method of Geng et al. [62], it still leaves a few issues unaddressed: (1) query categorization

and taxonomies may not be available or could be too noisy; (2) external taxonomies may

not necessarily provide the best way of splitting queries for training specialized rankers;

and (3) such categories may not be fine-grained enough for training and ranking purposes.

To overcome these problems, Bian et al. [20] proposed a divide-and-conquer framework

(DAC) for ranking specialization and instantiated it with RankSVM [19].

Our approach differs from prior work given that it optimizes freshness and relevance

simultaneously in an adaptive way. We enhance query representations by adding criteria-

sensitive features that can capture different aspects (e.g., relevance, freshness) of query-

document pairs. Each query is categorized according to both temporal and relevance

features, and the final ranking is produced by merging the results generated from several

different ranking models (See Chapter 5 for details.).

2.12 Multi-objective Optimization in Ranking

Training ranking models for multiple criteria beyond relevance, such as diversity, freshness,

and efficiency, has been the subject of many recent papers [50, 51, 63, 118]. Dong et al.’s

work on recency ranking [50, 51] is among the closest to our work; they consider freshness

in instance labeling for training effective ranking models. They argued that freshness

is especially important for breaking news queries and demoted the relevance labels of
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stale pages for training. Empirical experiments demonstrated that such demotion can

result in significant improvements on both relevance and freshness. We similarly generate

hybrid labels for documents based on their relevance and freshness grades, and show that

the labels generated by our strategy are more effective than those demoted for training.

Despite this resemblance, our optimization tasks are fundamentally different; Dong et

al. [50, 51] studied learning single adaptive or over-weighting rankers that optimize for

freshness and relevance primarily from the perspective of ranking adaptation.

Our work differs from theirs given that we investigate the multi-criteria ranking prob-

lem in a divide and conquer framework with balanced distribution of training data, and

emphasize adaptive balance between different criteria.

2.13 Ranking Evaluation Metrics

Ranking evaluation metrics aim to measure the relevance of search results in an objective

way. Representative ranking evaluation metrics include Precision, NDCG [71], MAP,

etc. Each individual metric reflects one perspective of search relevance. We now review

them one by one.

• Normalized Discounted Cumulative Gain (NDCG): It is especially designed for

multiple-scale rating type relevance judgments, and is sensitive to document po-

sitions in the list. NDCG at truncation level k is defined as:

NDCG(Q, k) =
1

|Q|

|Q|∑

j=1

Zkj

k∑

m=1

2R(j,m) − 1

log2(1 +m)
(2.16)
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where R(j,m) is the relevance score of the document at rank m for answering query

j. Zkj is the reciprocal of the ideal cumulative gain for query j at truncation level k,

such that the discounted cumulative gain is normalized to 1 per query. Equation 2.16

demonstrates that NDCG penalizes more on the bad search results at top positions

more than those at lower positions.

• Precision: It especially fits binary relevance judgments. It measures the number of

relevant documents at truncation level k, defined as:

Precision(Q, k) =
1

|Q|

|Q|∑

j=1

the number of relevant docs in top k results

k
(2.17)

• Mean Average Precision (MAP): It averages the precision at all the truncation levels

on which relevant documents appear, defined as

MAP (Q) =
1

|Q|

|Q|∑

j=1

∑
k Precision(Q, k) · I(doc@k is relevant)

the number of relevant docs
(2.18)

where I(doc@k is relevant) is an indicator function which equals 1 if the document

at rank k is relevant, 0 if not.

While we mainly use the above three ranking evaluation metrics in this thesis, it is

worthwhile pointing out that other ranking evaluation metrics exist to interpret search

quality in different ways. For example, Winners Take All (WTA) and Mean Reciprocal

Rank (MRR) emphasize the search quality at top positions, i.e., WTA quantifies the

accuracy at top 1 position while MRR cares that the position on which the first relevant

document appears. Therefore, the appropriateness of a given ranking evaluation metric

depends on the characteristics of the application.
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Chapter 3

Mining Anchor Text Trends for

Retrieval

3.1 Introduction

The primary goal of this chapter is to incorporate the trends of the creation of page in-links

associated with anchor text into measuring the anchor text importance for representing

page content in the retrieval task. When used for retrieval, one anchor text might not

be as useful as another, and so recent work [91, 52] has focused on how to determine

the importance of anchor text for a given destination page. However, such work only

considers one snapshot of the web graph (the current web), and so the influence from

historical anchor text is effectively excluded.

More importantly, the creation of anchor text reflects how web content creators view
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the destination page. A historical trace of the variation in such viewpoints can help

determine how to interpret the page. Consider a page which has 10 newly created in-links

associated with a specific anchor text in the past 3 days. When compared with another

page which only received ten in-links (with the same anchor text) within the past 10 years,

the importance of the anchor text on the former page should be emphasized, even if the

absolute weights based on the current snapshot cannot differentiate them.

Based on the above analysis, we operate on the assumption that better anchor text

representation of pages can improve retrieval quality. We incorporate the historical trends

on anchor text, i.e., the (dis)appearance of anchor text and its associated link structure, by

propagating the anchor text weights among historical and predicted future snapshots over

the time axis (See Section 3.3 for details.). Our work can be generalized onto other tasks,

such as web page clustering and classification. It can also help to build time-sensitive

document models.

Furthermore, we propose a variety of ways to incorporate the trends from historical

snapshots to better estimate the importance of anchor text in the current snapshot. Fi-

nally, we verify our models via empirical experiments, and our experiments show significant

improvement in retrieval quality on a real-world web crawl from the Stanford WebBase.

In the reminder of this chapter, we start by introducing the temporal anchor text

data used in this work. We then describe our methods in Section 3.3, which utilizes

temporal anchor text to better estimate the importance of anchor text for retrieval. The

experiments in Sections 3.4 and 3.5 show the effectiveness of our approaches. We discuss
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and summarize our effots in Section 3.6.

3.2 Temporal Anchor Data

A destination page gets in-links from multiple source pages at different time points, each

with distinct anchor text. We assign a timestamp to each pair of source and destination

pages, which represents the creation time of the associated link. Naturally, we consider

the item <source page, destination page, anchor text, creation time> to be unique1. If the

anchor text on the link changes, we assume that the link associated with the old anchor

text is removed and another link associated with the new anchor text is created.

Figure 3.1 demonstrates the variation of the self similarity of subsequent snapshots of a

collection of anchor text terms from month to month over a five-year time period. We take

the query “paris hilton” as one example. First, we achieve the top 2000 search results using

BM25 [107] from the corpus at each of the past months. Second, we compute normalized

TF-IDF scores of anchor terms associated with these 2000 search results. Third, we

compute the L1 distance of TF-IDF vectors on anchor terms in successive months. From

Figure 3.1, earlier months show somewhat larger changes, while the changes are more

moderate in later time periods. This seems sensible as many in-links were created during

the time period from 2001 to 2002. However, we also found the change in 2004 has a larger

deviation. We infer that in-links have sharp increase for some destination nodes, but not

1The position of anchor text within web pages is not considered in this chapter, while it also influences

the estimation of anchor text importance.
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Figure 3.1: Average and standard deviation of the lexical L1 distance of anchor text term
distribution over time for each of the top 2000 search results of the query “paris hilton”.
The X-axis is the time axis from early to late (from Jan. 2001 to Dec. 2005 with the
time unit being 1 month). The Y-axis records the average and deviation of the lexical
L1 distance of destination nodes’ anchor term distribution between two successive time
points.

for others. To better understand the fine-grained variation of anchor text on links, we

keep track of how the anchor text on each link change over time. The Jaccard coefficient

of anchor terms on a specific link between two successive time points is 0.9954±0.0514 on

average. Based on these observations, we believe that the anchor text on links are relatively

stable. Most anchor text does not change from the time point when the associated link

was created to the time point when it was removed. The change in aggregated impact of
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anchor texts onto the relevance of a destination node can be potentially used to benefit

web search. Motivated by these observations, we propose our temporal anchor text based

retrieval method.

3.3 Temporal Anchor Text Based Retrieval

In this section, we describe our proposed methods which incorporate historical trends of

page in-link creation rate and smooth the anchor text weights for destination pages in

anchor text based retrieval. Our method requires a web graph and the time point t0 on

which it is crawled. Here, we define t0 to be the current time point, and assume the

retrieval evaluation is based on the situation at t0. We follow the approach proposed by

Metzler et al. [91] to determine weights on anchor text at each time point. Metzler et al.

aggregated a set of unique anchor text lines for each given destination page, and calculated

weights on them individually for improving search relevance. However, we propose using

different weights on anchor text lines along different time points. Such weights on anchor

text lines represent their importance on a given destination page at a specific time point.

The output of our method is a collection of anchor terms and the final smoothed weights

on them for a destination page at time point t0. Specifically, our approach can be divided

into the following three steps:

• aggregate anchor text lines and calculate weights on them for destination pages at

each time point before t0;
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(a) Step 1

(b) Step 2

(c) Step 3

Figure 3.2: The overall procedure of our proposed approach.

• analyze the trend and use it to predict the possible weights on anchor text lines at

the time points after t0;

• propagate and diffuse the weights on anchor text lines along the time axis;

We illustrate the overall procedure of this approach in Figure 3.2.

3.3.1 Aggregate Historical Anchor Text

In order to better understand how to collect and weight the aggregated historical anchor

text, we first describe how we weight the anchor text of the current snapshot. We use the
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methods in Metzler et al.’s method [91] to collect and weight anchor text for a specific

web snapshot. While there are other ways to weight anchor text beyond Metzler et al.’s

method [91], it is the only one to deal with anchor text sparsity problem. The reason we

choose it as our basic anchor text weight estimator is that (1) it aims at enriching anchor

text representation; and (2) the historical link information may sometimes be unavailable

and deficient. We now briefly review the way of collecting and weighting anchor text in

that work.

Given a URL u, all in-link pages P that are within the same site (domain) as u are

collected as internal pages. Those in-link pages A that are in different domains from u are

defined as external pages. The anchor text on the external pages are called original anchor

text. For internal pages, we further collect the external pages of these internal pages. The

anchor text on the newly collected external pages are known as aggregated anchor text of

u. The original anchor text are weighted as follows:

wt(a, u) =
∑

s∈S(u)

δ(a, u, s)

|anchors(u, s)|

where S(u) is the set of external sites that links to u, δ(a, u, s) is 1 iff anchor text line

a links to u from site s. The aggregated anchor text are weighted in multiple ways; we

choose two of them which are shown to have best performance in general in [91], defined

as follows:

wtMin(a, u) = min
u′∈N(u)

wt(a, u′) wtMax(a, u) = max
u′∈N(u)

wt(a, u′)

where N(u) is the set of internal in-linked pages and wt(a, u′) is the original weight of
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anchor text line a for URL u′.

Both original anchor text lines and external anchor text lines are used to enrich anchor

text representation. We choose to use combined representation and back off representation

to enrich destination pages’ representation. Combined representation keeps the document

structure and augments both original anchor text and aggregated anchor text, whereas

back off representation exempts from the aggregated anchor text which have already ap-

peared in original anchor text lines.

Once we have weights on anchor texts at the current time point t0, we have actually

known which links should contribute to anchor text weights. We keep track of these links

by looking back to seek their creation time (see Section 3.3.4 for details). We define the

difference of two successive time points as ∆t, i.e., ∆t = ti − ti−1. We map each link onto

the time axis according to its creation time. If link l is created before ti but after ti−1, i.e.,

ti−1 < tcreation < ti, then for any given past time point after time i, i.e., tj for ti < tj < t0,

l is included in the snapshot at tj . Given any time point ti (ti < t0), we calculate the

weight wi(a, u) of anchor text line a on the web page u based on all the links included at

time point ti.

Figure 3.3 shows an example of how the weights on anchor text change over time

resulting from the creation of new links on the graph. To clarify this, we take Figure 3.3

(d) as one example to illustrate how we compute anchor text weights at each time point.

The importance of anchor text a2 from page 5 to page 9 is 0.5 since two unique anchor

text lines (i.e., a1 and a2) associated with page 9 are from the site colored by red. a2’s
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(a) t−3 (b) t−2

(c) t−1 (d) t0

Figure 3.3: The variation of weights on anchor text caused by the creation of new links
over time. The weights are calculated based on the combined representation of original
and aggregated anchor text. Nodes (i.e., web pages numbered from 1 to 9) in different
colors (also included in different rectangles) are from different domains.

importance to page 9 also passes through page 8 since a2’s importance on 8 is 1 and page 8

is one internal page of page 9. From Figure 3.3, with the creation of new links, the weights

on anchor text for the target page keep increasing. Although such increase is the general

case, we also notice that the weights on some anchor text lines may decrease when the

number of other anchor text lines within the same site suddenly increases. The weights

on anchor text actually depend on those on other anchor text with the same domain to
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some degree.

3.3.2 Quantify Trends to Predict Future

Quantifying trends of weights on anchor text can help to predict how the weights change

at future time points. Given a destination page, if the importance of its particular anchor

text increases more greatly than its other anchor text, we may have higher confidence

to believe such anchor text should be emphasized in some way since the trend shows it

may get a higher weight in the near future. Here, we assume that: (1) for a same target

page, the anchor text created at closer time points tend to be more consistent; and (2)

the weights on anchor text reflect the number of pages/sites pointing to the target page,

using that anchor text.

ARIMA (Auto-Regressive Integrated Moving Average) [66] is a powerful way to predict

time-series, but it is complex to use. Instead, we use linear regression on moving average

of order m to predict the value at the next time point. The reasons are as follows: (1) we

observe that weights on anchor text have stable and monotone trends through time once

the anchor text begins associating with the destination page; (2) we tested the fitness of

linear models on the weights (Max+combined) of individual anchor text lines over time.

The average mean square error (MSE) is only 0.0656. Based on these observations, we

believe the linear model can well fit the trends of historical anchor text weights.

Given a URL u and one associated anchor text line a, we have a series of historical

weights w−n(a, u), w−n+1(a, u), . . . , w0(a, u). We first use a sliding window with size 2k
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Figure 3.4: The computation of moving average of order k.

(k > 0) to smooth the time series. We calculate a moving average of order 2k as the

following sequence of arithmetic means:

∑−n+2k
i=−n wi(a, u)

2k + 1
,

∑−n+2k+1
i=−n+1 wi(a, u)

2k + 1
, . . . ,

∑0
i=−2k wi(a, u)

2k + 1

By using the sequence calculated above, we achieve the smoothed values from the time

point t−n+k to t−k. The next step is to use linear regression to predict the possible average

at time point t−k+1. The model assumes the moving average of order 2k + 1 has a linear

relationship with the time points given a pair of anchor text and destination page, which

is given by:

wi(a, u) = b+ c× i, i ≥ (−k + 1) (3.1)

We use existing evidence to estimate the parameters b and c. Once the weight ŵ−k+1(a, u)

is achieved, w1(a, u) can be calculated by:

w1(a, u) = ŵ−k+1(a, u) × (2k + 1)−
0∑

i=−2k+1

wi(a, u)

After we get the value of w1(a, u), we move the sliding window forward to calculate

56



www.manaraa.com

3.3. TEMPORAL ANCHOR TEXT BASED RETRIEVAL

t−5 t−4 t−3 t−2 t−1 t0 t1 t2

w Original weights 0.5 0.5 1 1 1.5 1.75 1.78 2.30

w Moving average 0.67 0.83 1.16 1.41 1.68 1.94

Table 3.1: An example of predicting the future weights of anchor text on a destination
node. The second line shows the moving average of order 3 (i.e., k = 1).

wi(a, u)(i > 1).

Table 3.1 shows an example of predicting the weights of at future time points t1 and

t2. We first calculate the moving average of order 3 from t−4 to t−1, and use them to

predict the moving average at t0 since the linear regression estimate the parameters b and

c to be 1.6750 and 0.2650 respectively. Thus, the predicted weight on t1 can be achieved

from the moving average at t0 and the weights at t−1 and t0. In the same way, we can

calculate the moving average of order 3 at t1 and the weight at t2.

3.3.3 Diffusing Temporal Anchor Text Weights

Analyzing the trends of anchor text weights on a destination page allows us to predict

the anchor text weights in the future. However, in order to better measure the impor-

tance of anchor text lines at t0, we need to combine both the predicted future weights

and the historical weights. As discussed in the previous section, the predicted weights

are extrapolated from historical trends, which help to differentiate two anchor text lines

with identical weights at t0. On the other hand, historical anchor text weights provide

confirmation about what a destination page looks like. When we emphasize the predicted

future weights, we give preference to newly created destination pages, since the new pages

tend to have higher anchor text creation rate, and the predicted anchor text weights are
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usually overemphasized. Whereas, when we combine some historical weights, we likely

emphasize old pages which have stable anchor text distribution. By combining both the

historical weights and predicted future weights, we can harmonize the influence from these

two sides.

Specifically, we imagine that the weights on an anchor text line at one time point can

propagate through time to influence the weights of the same anchor text line at other time

points for a given destination page. The intuition is that if an anchor text has a weight at

a time point ti, it can influence the weights on the same anchor text at other time points

in a decayed way which is proportional to a temporal distance. Thus, weights on two close

time points would have more influence on each other than those on two far time points.

Furthermore, we assume that the change ratio of the destination page content will also

influence the weight propagation since huge change is likely to cause such propagation to

decay more quickly, that is, page snapshots with distinct content tend to associate with

more diverse anchor text collections. Given a time window, we calculate weights at the

middle time point by aggregating the discount weights from all time points within it.

We now describe our method to propagate the weights formally. Let γ be the size

of time window T , i.e., the number of time points within the time window. Let a be an

anchor text line. Let u be a destination node, and ui be a destination node at time point

ti. w1(u, a), w2(u, a), . . ., wγ(u, a) are the weights of a on u at time points within the time

window T . The weights at time point t γ

2
after combining the propagated weights of other
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time points within the time window is given by:

w′
γ

2

(u, a) =
γ∑

i=1

f(u, γ, i)wi(u, a) (3.2)

where f(u, γ, i) is the kernel function which determines the way of combining weight

w(u, a) at time point ti.

Enlightened by previous work [47, 77, 100, 87] which used proximity-based methods, we

use five modified kernel functions derived from Gaussian kernel (Equation 3.3), Triangle

kernel (Equation 3.4), Cosine kernel (Equation 3.5), Circle kernel (Equation 3.6), and

Rectangle kernel (Equation 3.7), which are defined by:

f1(u, γ, i) = exp[−
1

2
(

i− γ
2

γ(1 +Bu(i ↔
γ
2 ))

)2] (3.3)

f2(u, γ, i) = 1−
|i− γ

2 |

γ(1 +Bu(i ↔
γ
2 ))

(3.4)

f3(u, γ, i) =
1

2
[1 + cos(

π(i− γ
2 )

γ(1 +Bu(i ↔
γ
2 ))

)] (3.5)

f4(u, γ, i) =

√
1− (

|i− γ/2|

γ(1 +Bu(i ↔
γ
2 ))

)2 (3.6)

f5(u, γ, i) = 1 (3.7)

where Bu(i ↔
γ
2 ) is the average similarity between the destination page u’s content at two
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successive time points within the range [i, γ/2] if i < γ/2 or [γ/2, i] if i ≥ γ/2. Without

loss of generality, we assume i < γ/2. Bu(i ↔
γ
2 ) is defined by:

Bu(i ↔
γ

2
) =

1
γ
2 − i

γ

2
−1∑

i′=i

Bu(i
′, i′ + 1) (3.8)

We compare the similarity of two snapshots of page u’s content by comparing their asso-

ciated language models via the Bhattacharyya correlation [18]:

Bu(i
′, i′ + 1) =

∑

v∈V

√
P (w|θui′

)P (w|θui′+1
) (3.9)

This metric renders a similarity score between 0 and 1. Although this similarity is only

based on P (w|θu), we can consider combining other measures based on topic, timestamp,

or out-link overlap so that all these measures can influence the probability of propagating

the anchor text importance through the time axis.

3.3.4 Implementation

One key problem for utilizing temporal anchor text is that it is difficult to keep track of the

information about when a link was created. And we are not aware of any previous work

that mined the historical information by processing the data from the Internet Archive.

In our experiments, given a link appearing in the current snapshot, we looked back to

archival copies of the source page via the Wayback Machine portal of the Internet Archive

[70]. We parsed these copies to get all out-links within the web pages, and checked whether

the given link was still in the out-link collection and whether the anchor text associated

with the given link had any change. If either the anchor text has changed or the link did
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not exist, we utilized the timestamp of the next latest copy to be the time when the given

link was created.

3.4 Experiment Setup

3.4.1 Data set and Evaluation

Although many datasets, such as TREC .GOV collection [97], have been built for research

purposes, they are usually small and biased, and cannot represent the characteristics of

the real-world web graph. Hence, we choose to use a May 2005 crawl from the Stanford

WebBase [34] as our dataset for ranking evaluation. This crawl has 58 million pages, and

approximately 900 million links.

For ranking evaluation, 50 queries are selected from a set consisting of those frequently

used by previous researchers, ODP category names, and popular queries from Lycos and

Google. We list these queries in Table 3.2. For each query, we have relevance judgments

of 35 URLs on average. When human editors (members of our research lab) judge each

pair of <query, URL>, they are asked to give a score based on how relevant the URL is

to the given query. The rating results in the selection among excellent, good, not sure,

bad, and worse. We use a five-value scale which translates the ratings into the integers

from 4 to 0. If the average score for this pair is more than 2.5, it is marked as relevant.

Based on the available relevance judgments, we evaluate the retrieval quality of our
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harry potter college football diabetes
music lyrics george bush nfl
online dictionary britney spear pokemon
olsen twins diamond bracelet madonna
weight watchers windshield wiper brad pitt
playstation jennifer lopez maps
new york fireworks moto racer poker
halloween costumes iraq war tsunami
st patricks day cards four leaf clover games
the passion of christ tattoos jersey girl
automobile warranty fox news golf clubs
herpes treatments paris hilton pilates
skateboarding taxes seinfeld show
lord of the rings hilary duff american idol
angelina jolie star wars diets
final fantasy janet jackson poems
prom hairstyles musculoskeletal disorders

Table 3.2: Set of fifty queries used for relevance evaluation in WebBase.

ranking algorithms over the Normalized Discounted Cumulative Gain (NDCG) and Pre-

cision@10. We have introduced these metrics in Section 2.13.

3.4.2 Ranking Function

Combining different fields of web pages has been shown to be highly effective for retrieval

on the web in previous work [135]. BM25F is such a ranking model, which combines term

frequencies in different fields linearly for BM25 score calculation. In this work, we test our

anchor text weighting strategies by combining body text and anchor text in the BM25F

model for retrieval. While we introduced field retrieval models in Section 2.4, we now

emphasize how to integrate the anchor text field into the retrieval model BM25F. Suppose

wbody(i, j) is the weight of term i for page j in the body field, i.e., the term frequency
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of term i in page j. Let wanchor(i, j) be the weight of term i in the anchor text lines

associated with page j, which is calculated by:

wanchor(i, j) =
∑

a∈A(j)

wt(a, j) × tfanchor(i, a)

where wt(a, j) is the weight on anchor text line a for the page j, and tfanchor(i, a) is the

term frequency of i in the anchor text line a.

The aggregated term weights on i is a linear combination of weights i on anchor text

and page body, which is given by:

w(i, j) = (1− α)× wanchor(i, j) + α×wbody(i, j)

where α is a combination parameter, which controls the balance between term weights

on anchor text and page body used in BM25F ranking function. The document length is

calculated by the same method.

3.5 Experimental Results

Our goal is to demonstrate the superiority of our approach, which utilizes the historical

anchor text information mined from the Internet Archive to improve search relevance. In

this section, we report the results of our ranking evaluation. We start by showing how the

proposed ranking algorithms significantly improve the retrieval quality. We then render

some deeper analysis about the characteristics of these ranking algorithms with respect

to the improvement of ranking quality.
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3.5.1 Performance Comparison

As an overall comparison, we study the effectiveness of enlarging the window for propagat-

ing historical weights on anchor text lines over multiple aggregation functions and anchor

text representation in this section. The selection of kernel functions and all parameters

in BM25F are learned based on five-fold cross-validation. Our baseline is Metzler et al.’s

method [91], operating on the latest snapshot. We show the comparison of ranking per-

formance in Table 3.3. Given that about 97% inlinked pages do not have archival copies

(we removed them), the improvement of using anchor text versus without using anchor

text is not obvious. The performance of almost all combinations of window sizes, aggrega-

tion functions and document representation over all the metrics outperform the baseline

significantly. Furthermore, the performance of all combinations of aggregation functions

consistently increases with the window size, which indicates that the use of temporal in-

links, especially those with a long term historical context is a good resource to reflect the

link evolution that can be utilized in improving the ranking quality in terms of document

relevance. Furthermore, the combined aggregation functions outperform the Backoff ap-

proaches, which suggests that the benefits from the “confirmation” influence brought by

duplicate anchor text lines outweigh the noise they introduce.

3.5.2 Deeper Analysis

Deeper analysis focuses on two research questions: (1) how our proposed approach benefits

from different kernel functions for propagating anchor text weights; and (2) how our
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Table 3.3: Performance comparison for different windows and different anchor text repre-
sentations. The † and ‡ symbols demonstrate the performance has statistically significant
improvement when compared with the baseline (Latest anchors) at the level of p < 0.1
and p < 0.05 by one-tailed student t test.

Baseline

P@10 NDCG@3 NDCG@5 NDCG@10

No anchors 1.6150 0.1860 0.1830 0.1749
Latest anchors 1.6170 0.1899 0.1846 0.1781
All historical

anchors 1.6596 0.2023 0.1901 0.1856

Backoff+Max

Window (Months) P@10 NDCG@3 NDCG@5 NDCG@10

1 1.6383† 0.2019‡ 0.1911† 0.1822†
2 1.6383† 0.2064‡ 0.1945† 0.1858‡
4 1.6809‡ 0.2064‡ 0.1945† 0.1879‡
7 1.7234‡ 0.2076‡ 0.1984‡ 0.1915‡
12 1.7234‡ 0.2085‡ 0.1990‡ 0.1916‡
24 1.7660‡ 0.2086‡ 0.2002‡ 0.1950‡

Backoff+Min

Window (Months) P@10 NDCG@3 NDCG@5 NDCG@10

1 1.6170 0.1956† 0.1901† 0.1813†
2 1.6170 0.2024‡ 0.1913† 0.1829†
4 1.6596‡ 0.2050‡ 0.1921† 0.1853‡
7 1.7021‡ 0.2063‡ 0.1979‡ 0.1892‡
12 1.7234‡ 0.2072‡ 0.1975‡ 0.1909‡
24 1.7660‡ 0.2073‡ 0.1990‡ 0.1943‡

Combined+Max

Window (Months) P@10 NDCG@3 NDCG@5 NDCG@10

1 1.6383† 0.2019‡ 0.1889 0.1841‡
2 1.6809‡ 0.2064‡ 0.1935‡ 0.1889‡
4 1.7234‡ 0.2064‡ 0.1951‡ 0.1909‡
7 1.7660‡ 0.2094‡ 0.1972‡ 0.1944‡
12 1.7660‡ 0.2105‡ 0.1980‡ 0.1964‡
24 1.8298‡ 0.2129‡ 0.2025‡ 0.2003‡

Combined+Min

Window (Months) P@10 NDCG@3 NDCG@5 NDCG@10

1 1.6170 0.1956† 0.1875 0.1830‡
2 1.6809‡ 0.1994† 0.1902† 0.1875‡
4 1.7234‡ 0.2033‡ 0.1941‡ 0.1899‡
7 1.7660‡ 0.2081‡ 0.1963‡ 0.1937‡
12 1.7660‡ 0.2092‡ 0.1980‡ 0.1958‡
24 1.8298‡ 0.2115‡ 0.2015‡ 0.1996‡
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method benefits from historical information, that is, the time span of web snapshots vs.

ranking improvements.

To answer the first research question, we show the effectiveness of kernel functions

used in propagating anchor text line weights in Table 3.4. The performance of the simple

Rectangle kernel is arguably the best in general among all combinations of aggregation

functions. Gaussian and Circle kernels show comparable performance, which outperform

Triangle and Cosine kernels. This observation demonstrates that search results benefit

from emphasizing both historical and predicted future anchor weights without deempha-

sizing the influence of time points far away from the current point. We infer that ranking

quality will benefit from long-term temporal information rather than short-term since

long-term information tends to express more stable trends.

To answer the second research question, we investigate the relationship between the

average age of search results and the relative improvement of ranking quality in Table 3.5.

We bucketize the queries according to the average age of their top 2000 search results.

The queries in bucket 0 are those whose search results have the shortest average age, and

the ones in bucket 3 have the longest average age on their search results. From Table

3.5, query results with longer ages benefit more by propagating anchor text weights from

past time points, whereas the query results with shorter ages have better improvements by

propagating predicted weights from future time points over all window sizes. By combining

the weights on both past time points and future time points, the relative improvement is

greater than only combining weights in one direction for most buckets in different window
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Table 3.4: Performance comparison for different kernels for propagating temporal anchor
line weights when the window size is 12. The kernels 1, 2, 3, 4, and 5 represent Gaussian
kernel, Triangle kernel, Cosine kernel, Circle kernel, and Rectangle kernel respectively.

Baseline

P@10 NDCG@3 NDCG@5 NDCG@10

No anchors 1.6150 0.1860 0.1830 0.1749
Latest anchors 1.6170 0.1899 0.1846 0.1781

Backoff+Max

Kernel P@10 NDCG@3 NDCG@5 NDCG@10

1 1.7022 0.2085 0.1962 0.1897
2 1.7021 0.2044 0.1955 0.1900
3 1.7020 0.2044 0.1955 0.1900
4 1.7234 0.2063 0.1985 0.1899
5 1.7023 0.2050 0.1990 0.1916

Backoff+Min

Kernel P@10 NDCG@3 NDCG@5 NDCG@10

1 1.7021 0.2072 0.1953 0.1890
2 1.7019 0.2030 0.1950 0.1889
3 1.7019 0.2030 0.1950 0.1889
4 1.7234 0.2050 0.1955 0.1891
5 1.7021 0.2037 0.1975 0.1909

Combined+Max

Kernel P@10 NDCG@3 NDCG@5 NDCG@10

1 1.7457 0.2105 0.1980 0.1940
2 1.7447 0.2063 0.1955 0.1931
3 1.7447 0.2063 0.1955 0.1931
4 1.7660 0.2057 0.1966 0.1930
5 1.7660 0.2068 0.1977 0.1964

Combined+Min

Kernel P@10 NDCG@3 NDCG@5 NDCG@10

1 1.7447 0.2086 0.1980 0.1933
2 1.7438 0.2050 0.1946 0.1920
3 1.7438 0.2050 0.1946 0.1920
4 1.7660 0.2092 0.1957 0.1924
5 1.7660 0.2055 0.1967 0.1958
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Table 3.5: Performance comparison for queries bucketized by the average age of search
results. The weighting strategy is Combined+Max. P: Propagating weights on anchor
text lines from past time points; F: Propagating predicted weights on anchor text lines
from future points; T: Propagating weights on anchor text lines from both sides.

Window Time Bucket 0 Bucket 1 Bucket 2 Bucket 3

P 4.00% 2.72% 2.05% 2.92%
1 F 4.00% 2.72% 2.05% 2.92%

T 7.79% 2.67% 2.20% 3.54%

P 7.79% 2.75% 2.20% 3.54%
2 F 7.79% 2.67% 2.20% 3.54%

T 7.01% 6.44% 2.70% 4.27%

P 7.12% 6.32% 2.70% 4.27%
4 F 8.82% 6.44% 2.63% 4.03%

T 8.80% 7.12% 2.83% 4.27%

P 5.92% 7.11% 2.88% 4.58%
7 F 7.24% 6.46% 3.04% 4.07%

T 8.93% 7.18% 3.14% 4.27%

P 6.11% 4.78% 3.01% 4.64%
12 F 8.08% 7.02% 3.03% 4.27%

T 12.04% 6.18% 2.69% 4.27%

P 5.83% 2.88% 0.85% 5.05%
24 F 12.76% 7.46% 2.75% 4.27%

T 11.04% 5.30% 2.15% 3.92%

sizes.

3.6 Summary

The dynamic page in-links and associated anchor text reflect how other pages view desti-

nation page changes over time. However, the ever-changing weights on anchor text, as an

indicator of the change of anchor text importance, is seldom used for web search, partly

because such information is typically not available. In this chapter, we utilize the his-

torical archival copies of web pages provided by the Internet Archive (a public resource)
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to investigate ways to benefit web search. We propose new methods to quantify anchor

text importance, which are motivated by differentiating pages with different in-link cre-

ation rate over time and different historical in-link context. Experiments on a crawl from

the Stanford WebBase show the ranking performance of our proposed methods has more

than 10% improvement over the state-of-the-art method that does not consider historical

information.

From this work, we recognize that the existing archival web pages only cover a small

portion of the historical web, which causes a large amount of missing anchors (only 2.57%

anchors have archival copies in our data set) and thus limits the application of the proposed

method. Furthermore, the crawling policies used to collect these archival web page copies

might not accurately record the trace of web activities. However, as an initial work, our

results revealed that with enough historical information for pages on the web, we can give

more accurate estimates about anchor text importance and page in-link importance to

improve web search.
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Chapter 4

Incorporating Web Freshness into

Web Authority Estimation

4.1 Introduction

We presented our approach for incorporating the trends of the creation of page in-links into

measuring anchor text importance in Chapter 3. In this chapter, we move to page authority

estimation. Page authority is a measure that describes how important a web page is on the

web. Because it is necessary to differentiate pages in such a large scale corpus, we consider

page authority in addition to its relevance with respect to queries in web search. Much

previous work [23, 78, 86] has been studied to estimate page authority based on different

assumptions and successfully generalized onto multiple tasks [12, 21, 124]. However, most

of these studies accumulated the authority contributions based only on the evidence of
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links between pages, without considering the temporal aspects concealed in pages and

their connections.

Freshness is important to the quality of much in our daily lives, such as flowers and

food. The same is also true for web page authority estimation. Pages being fresh tend to

be welcome. However, traditional link analysis algorithms such as PageRank [23] estimate

page authority by simply accumulating contributions from in-links on a static web link

structure, without considering whether pages are still fresh when web users search for

them. Freshness of web links is also important to link-based ranking algorithms. The web

is widely recognized as one of the networks in which the rich get richer as the networks

grow, leading to power law effects [30]. Old pages have more time to attract in-links, but

may contain stale information. For example, as of this writing, http://www.sigir2007.

org/ has 902 in-links [128] while http://www.sigir2010.org/ only has 208. Assuming

the same contribution from each in-link, methods like PageRank would render a higher

authority score for the earlier version of the SIGIR conference homepage.

Additionally, a branch of research [113, 36] unraveled the fact that the local link

structures with sudden changes might indicate link spam. A single web snapshot is unable

to detect such changes and further smooth or neutralize the influence automatically.

Motivated by these two points, in this work we propose to estimate web page authority

by two separate steps. First, to avoid old pages dominating the authority scores, we keep

track of web freshness over time from two perspectives: (1) how fresh the page content is,

named page freshness; and (2) how much other pages care about the target page, named
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in-link freshness. To achieve this, we mine web authors’ maintenance activities on page

content, such as the creation and removal of out-links. Each activity is associated with

the timestamp at which it occurs. We build temporal profiles for both pages and links.

A random walk model is exploited to estimate the two predefined freshness measures.

By modeling the web freshness from these two perspectives, we can bias the authority

distribution to fresh pages, and so neutralize the unfair preference toward old pages by

traditional link analysis ranking algorithms.

Given the web freshness measures we have quantified, the next steps are conducted

in two different directions. One of them utilizes the correlation between page freshness

and inlink freshness to estimate how influential the update of page content is. We then

use such a “influential factor” to enhance our estimated page freshness. We refer to this

approach as “correlation based temporal ranking model” (C-Fresh). The other direction

is based on the random walk models, referred to as the “random walk based temporal

ranking model” (T-Fresh). T-Fresh incorporates web freshness into time-dependent page

authority estimation. It outputs an authority score for each page at every predefined time

point. The authority is estimated in an approximated way, partly depending on the link

structure and web freshness of nearby snapshots, with the ones at farther time points

having smaller influence.

In the remainder of this chapter, we start by introducing how we quantify web freshness

and how we incorporate it into a web surfer model to estimate time-dependent web page

authorities in Section 4.2. We then present C-Fresh and T-Fresh in Sections 4.3.1 and
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Infl. on Gain of
Link activity p’s InF p’s InF

1 creation of link l : q → p ↑↑↑ 3
2 update on link l : q → p (changed anchor) ↑↑ 2
3 update on link l : q → p (unchanged anchor) ↑ 1.5
4 removal of link l : q → p ↓↓ -0.5

Infl. on Gain of
Page activity q’s PF q’s PF

1 creation of page q ↑↑↑ 3
2 update on page q ↑ 1.5
3 removal of page q ↓↓ -0.5

Table 4.1: Activities on pages and links and their influence on web freshness. (The link l
points from page q to page p. ↑: positive influence on web freshness. ↓: negative influence
on web freshness. The number of ↑ or ↓ indicates the magnitude. We assign the influence
and gain of inlink and page freshness based on our intuition in this work, considering our
emphasis is to demonstrate the effectiveness of incorporating web freshness on web page
authority estimation.)

4.3.2 respectively. We present how we set up experiments in Section 4.4; and show the

evaluation results of our proposed ranking algorithms in Section 4.5. We discuss and

summarize this work in Section 4.6.

4.2 Representing Web Freshness Over Time

Web freshness reflects how fresh a web page is at a given time point ti by in-link freshness

(InF) and page freshness (PF) (See Figure 4.1 for details.). The reasons we separate these

two web freshness measures are: (1) InF and PF depict web freshness from the perspectives

of information recommenders and information providers respectively; and (2) it leverages

two types of web freshness such that they mutually influence web authority estimation.

Given a web page p, we assume that each update on p’s parent page q is a direct validation
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Figure 4.1: The computation of page and in-link freshness. For page freshness (left), the
activities associated with page u, v, w and t all influence the page freshness of u. For
in-link freshness (right), the activities associated with page u and t mutually influence
the in-link freshness of page t. The influence of web maintenance activities on page and
in-link freshness propagates through hyperlinks backward and forward respectively.

of the link from q to p, and so the updates on q implies that q pays attention to all of

its out-linked pages, including p. Hence, we use InF to represent the attention from p’s

in-link pages, which is computed from the accumulation of activities on all of p’s parent

pages up to ti. Unlike InF, PF represents how fresh p is up to ti based on the activities

on page p itself. We denote the inlink and page freshness of page p at time point ti as

InF (p)ti and PF (p)ti respectively.
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4.2.1 Building Temporal Page and Link Profiles

In order to compute InF and PF, the first step is to generate temporal page profiles (TPP)

and temporal link profiles (TLP). We proposed to use TPP and TLP to record the web

authors’ activities on the pages and links over time. Given a page p, each item on its

TPP records the evidence of p proceeding a type of activity at a specific time point.

It is written as a 3-tuple <page ID, activity type, timestamp>, where activity

type∈{creation, update, removal}. Given a link l with its associated anchortext, TLP

records the evidence of a type of activity on l at a specific time point. Each item on TLP

can similarly be represented as the 3-tuple <link ID, activity type, timestamp>,

where activity type∈{creation, update with unchanged anchor, update with changed

anchor, removal}. In this way, each link and page is associated with a series of timestamped

activities. Table 4.1 summarizes the influence of these activities on web freshness.

4.2.2 Quantifying Web Freshness

Based on TPP and TLP, we next quantify web freshness, i.e., InF and PF. In order

to simplify analysis, we separate the continuous time axis into discrete time points, e.g.

(t0, t1, . . . , tn, . . .), with a unit time interval ∆t between successive time points, i.e., ∆t =

ti− ti−1. Web freshness at any time point ti is dependent on (1) the web freshness at ti−1,

and (2) the activities recorded on TPP and TLP, which occur between ti−1 and ti. When

∆t is small enough, it is reasonable to assume that any activities in [ti−1, ti] occur at ti.

In this way, we map all the web activities onto discrete time points. For web freshness
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at ti−1, we assume it decays exponentially over time. Thus, InF (p)ti and PF (p)ti can be

given by:

InF (p)ti = β1e
−β2∆tInF (p)ti−1

+∆InF (p)|titi−1
(4.1)

PF (p)ti = β3e
−β4∆tPF (p)ti−1

+∆PF (p)|titi−1
(4.2)

where ∆PF (p)|titi−1
and ∆InF (p)|titi−1

are the incremental freshness scores from the ac-

tivities in [ti−1, ti], and β1e
−β2∆t is a coefficient that controls the decay of historical web

freshness.

In the next step, we compute the incremental in-link freshness ∆InF (p)|titi−1
for the

given page p. Since in-link freshness depends on the activities on TLP, we compute

∆InF (p)|titi−1
by accumulating all the activities on p’s in-links in [ti−1, ti]. Let Cj(l) be

the number of the jth type of link activity on link l in [ti−1, ti]. Let wj be the unit

contribution of the jth type of link activity. The incremental in-link freshness is written

as:

∆InF0(p)|
ti
ti−1

=
∑

l:q→p

∑

j∈LA

wjCj(l) (4.3)

where LA is the set of link activity types. However, it is not enough to propagate such

influence in one step; we additionally propagate in-link activities iteratively, leading to

smoother in-link freshness scores. Let ∆InF0(p)|
ti
ti−1

in Equation 4.3 be an initial score.

In each iteration, every page receives in-link freshness scores from its parent pages, and

also holds its initial score. The process converges and produces a score for every page

determined by both its parents’ scores and its own in-link activities [110]. Thus, the
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incremental in-link freshness is given by:

∆InF (p)|titi−1
= λInF∆InF0(p)|

ti
ti−1

+ (1− λInF )
∑

l:q→p

mqp∆InF (q)|titi−1
(4.4)

where mqp is the weight on the link from q to p. Equation 4.4 is actually the personalized

PageRank (PPR) [67]. We use one-step transition probability from q to p based on link

structure to represent mqp, where
∑

mq∗ = 1 if q has at least one out-link.

We next compute the incremental page freshness ∆PF (p)|titi−1
. Similar to

∆InF (p)|titi−1
, we argue that how fresh one page is depends on both the page itself and

its out-linked pages, since the out-linked pages are in some sense extensions of the current

page. We thus propagate page freshness backward through links. In each iteration, every

page receives page freshness scores from its out-linked pages, and also holds its initial

score. This process converges finally and generates a page freshness score on every page.

Let C ′
j(p) be the number of the jth type of page activity on p in time period [ti−1, ti]. Let

w′
j be the unit contribution of the jth type of page activity. The initial incremental page

freshness score PF0(p)|
ti
ti−1

is defined as:

∆PF0(p)|
ti
ti−1

=
∑

j∈PA

w′
jC

′
j(p) (4.5)

where PA is the set of page activity types. The incremental page freshness is given by:

∆PF (q)|titi−1
= λPF∆PF0(q)|

ti
ti−1

+ (1− λPF )
∑

l:q→p

m′
qp∆PF (p)|titi−1

(4.6)

where m′
qp is the weight on the link from q to p. We use the inverted one-step transi-

tion probability to represent m′
qp, where

∑
m′

∗p = 1 if page p has at least one in-link.
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Once ∆InF (p)|titi−1
and ∆PF (p)|titi−1

are computed, we compute InF (p)ti and PF (p)ti by

Equation 4.1 and 4.2.

4.3 Temporal Ranking Models

Given the inlink freshness and page freshness of every page at individual time points we

presented in Section 4.2, we next introduce these two types of freshness scores to enhance

web authority estimation, using correlation and random walk temporal ranking models.

4.3.1 Correlation Based Temporal Ranking Model (C-Fresh)

C-Fresh quantifies the temporal freshness correlation between pages and their in-links. Its

underlying assumption is that the consistency between the changes of page content and

page in-coming links reflects the impacts of page change. To do this, we exploit the method

by Chien and Immorlica [32], in which the authors measure query semantic similarity by

using temporal correlation. Given a page p, its page and in-link freshness are denoted

as (PFtc(p), PFtc+1
(p), . . . , PFtr (p)) and (InFtc(p), InFtc+1

(p), . . . , InFtr (p)) covering p’s

life span. The temporal freshness correlation (TFC) between page p and its in-links is

given by:

TFC(p) =
1

n

tr∑

t=tc

(PFt(p)− PF (p)

σPF (p)

)(InFt(p)− InF (p)

σInF (p)

)

where σPF (p) and σInF (p) are the standard deviations of PF (p) and InF (p), respectively.

Once we calculate the temporal freshness correlation for every page (tr − tc ≥ 2∆t),

we next combine it with page freshness by ranks, rather than scores. Given a time point
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of interest ti, the combined page freshness rank of document d is written as:

Rankcombined(d) = (1− β)RankPFti
(d) + βRankTFC(d) (4.7)

where β = a−1
n−1+a−1 , and n is the total number of time points, and a is the number of

time points on which p exists. As a increases, TFC(d) becomes more stable, and therefore

we emphasize its contribution in the combined page freshness estimation Rankcombined(d)

(Equation 4.7). We next use this combined page freshness score to represent web page

authority.

4.3.2 Random Walk Based Temporal Ranking Model (T-Fresh)

T-Fresh follows proximity-based authority propagation rules. It outputs an authority

score for each page at every predefined time point. The authority is estimated in an

approximated way, partly depending on the link structure and web freshness of nearby

snapshots, with the ones at farther time points having smaller influence.

We start by describing a “temporal random surfer model”, which motivates our method

T-Fresh. The “temporal random surfer model” is similar to the “random surfer model”,

which explains PageRank [23]. However, our surfer model differs from the traditional

random surfer model in two aspects. First, the way that the web surfer chooses the pages

on which snapshot to reach depends on the time point of her current snapshot. Second,

the web surfer prefers fresh web resources. Figure 4.2 depicts one simple example of how

the surfer behaves on an archival web of four snapshots.

Consider a web surfer wandering on an archival web corpus, which includes multiple
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web snapshots collected at different time points (t0,t1, . . .,tn). For every move, the surfer

takes the following steps. First, she can choose either to follow one of the out-linked pages

or to randomly jump to any page at the same time point. However, unlike PageRank

in which a web surfer has equal probabilities to follow out-going links, the preference of

our surfer choosing out-going links correlates to the page freshness of out-linked pages.

Consider the example in Figure 4.2. Suppose the surfer is currently on page A at t2. She

follows the link to B at t2 (solid link) with probability (1− d)Ft2(B,A), where Ft2(B,A)

is a function which depends on the page freshness of all A’s out-linked pages at t2 and

∑
P :A→P Ft2(P,A) = 1. The probability that the surfer randomly jumps to any page at

t2, such as B, is d/Nt2 , where Nt2 is the total number of pages at t2, and d is a constant

0.15.

After the surfer reaches the page chosen in the first step, she next selects the specific

snapshot of that page to jump based on her locality, which correlates to the time difference

between the current snapshot and the snapshot that the surfer will reach next time. This

process actually propagates authority among snapshots and uses the link structure at one

time point to influence the authority computation at other time points. The propagation

decays with time difference between snapshots. In the example shown in Figure 4.2, t1 to t4

represent four successive snapshots, and the same pages on different snapshots represent

their states at different time points. Based on such a archival web, suppose the surfer

reaches B at t2 after the first step, she can jump to B at any time point as long as it exists

(following dash bi-directed links), i.e., t2, t1, and t0. Specifically, the probability that she
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Figure 4.2: The process of T-Fresh. Each node represents one web page.

jumps to B at t1 is written as Pt1|t2(B), which depends on the time difference between t1

and t2.

Once the surfer reaches the page at the chosen time point, e.g., page B at t1, she

browses it with the mean stay time µt1(B), which correlates B’s in-link freshness at t1

before the next move.

In this way, the surfer’s behavior on the archival web can be separated as (1) moving

from one page to another (this can proceed either within the same snapshot or between

two different snapshots); and (2) staying on a page. It leads to a semi-Markov process [110]
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for page authority estimation.

Definition 1 A semi-Markov process is defined as a process that can be in any one of N

states 1, 2, . . ., N , and each time it enters a state i it remains there for a random amount

of time having mean µi, and then makes a transition into state j with probability Pij .

Suppose the time that the process spends on each state is a fixed constant, the semi-

Markov process leads to a Markov chain. Assuming all states in such a Markov chain

communicate with each other, the process can generate a stationary probability πi for any

state i. The long-run proportion of time that the original semi-Markov process is in state

i is given by:

A(i) =
πiµi∑N

j=1 πjµj

, i = 1, 2, . . . , N (4.8)

This solution divides the time-dependent page authority estimation into (1) computing

the stationary probability that a surfer reaches every page in the archival corpus; and (2)

computing the mean of a surfer staying on every page.

Estimating Stationary Probability

We now introduce the computation of probability πp,ti that a web surfer enters a page p

at the snapshot ti. In the first step of each move, the surfer reaches page p at any time

point tj by: (1) following p’s in-link at tj to reach p; (2) jumping from any page at tj to

p at tj.

Ptj (Follow|q) = (1− d), Ptj (p|q, Follow) = Ftj (p, q) (4.9)
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Ptj (Jump|q) = d, Ptj (p|q, Jump) = 1/Ntj (4.10)

where d is 0.15 by default. Ftj (p, q) is the web surfer’s preference on following out-linked

pages. Intuitively, a fresh web resource is more likely to attract a surfer’s attention. We

define Ftj (p, q) as:

Ftj (p, q) =
PFtj (p)∑

p′:q→p′|tj
PFtj (p

′)
(4.11)

In the second step of each move, the surfer reaches page p at ti from page p at tj is

given by:

Pti|tj (p) =
w(ti, tj)∑

q∈Vi,q∈Vj
w(ti, tj)

(4.12)

where Vi and Vj are the sets of pages at time point ti and tj respectively, and w(ti, tj) is

the weight that represents the influence between the snapshots at ti and tj . Motivated

by previous work [47, 77, 87, 100] which used proximity-based methods, we utilize 6

kernel functions to model the authority propagation between snapshots: gaussian kernel

(equation 4.13), triangle kernel (equation 4.14), cosine kernel (equation 4.15), circle kernel

(equation 4.16), passage kernel (equation 4.17) and PageRank kernel (equation 4.18). We

formally define them as follows.

w1(ti, tj) = exp

[
−

(ti − tj)
2

2|T |2

]
(4.13)

w2(ti, tj) = 1−
|ti − tj |

|T |
(4.14)

w3(ti, tj) =
1

2

[
1 + cos

(
|ti − tj|π

|T |

)]
(4.15)

w4(ti, tj) =

√

1−

(
|ti − tj|

|T |

)2

(4.16)
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w5(ti, tj) = 1 (4.17)

w6(ti, tj) =

{ 0.85 ti = tj

0.15
|T−1| ti 6= tj

(4.18)

where |T | is the window size of one step authority propagation between snapshots. Except

for Equation 4.13, all the other kernels require |ti−tj| < |T |, that is, the one step authority

propagation proceeds only within the window with a specified size. Larger |T | results in

more choices for the web surfer at each move between snapshots, while smaller |T | leads

to direct influence mainly from nearby time points. In this work we set |T | to the total

number of snapshots involved in authority propagation by default.

Combining the analysis above, the probability that a web surfer reaches page p at

snapshot ti can be written as:

πp,i =
∑

tj∈Ti

Pti|tj (p)
∑

q:q→p|tj

Ptj (Follow|q)Ptj (p|q, Follow) (4.19)

+
∑

tj∈Ti

Pti|tj (p)
∑

q|tj

Ptj (Jump|q)Ptj (p|q, Jump)

=
∑

tj∈Ti

Pti|tj (p)×

[
(1− d)

∑

q:q→p|tj

F ′
tj
(p, q)πq,j + d

∑

q|tj

πq,j
Ntj

]

where Ti is the set of snapshots which can directly distribute authority to ti within one

step. Based on the surfer’s behavior, this Markov process guarantees all the states to

communicate with each other, leading to a transition matrix that is irreducible and aperi-

odic [110]. As a result, it converges and generates a stationary probability on every page

existing in any snapshot.
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Estimating Staying Time

Pages with more in-link activity are likely to attract a surfer to spend time in browsing

it. We assume the web surfer prefers fresh web resources, and so the mean time (µp,i)

of the surfer staying on page p at ti can be proportional to p’s web freshness at ti. As

discussed in Section 4.3.2, the web surfer prefers pages with high page freshness when

choosing among out-going links; we use in-link freshness to model the time of a surfer

staying on a web page. In this way, the pages with both high in-link freshness and page

freshness are more likely to be given high authority scores. Specifically, we utilize a sliding

window and compute p’s weighted in-link freshness centroid within it as the estimation of

µp,i, which is formally given by

µp,i = k
∑

tj∈T ′
ti

w′(ti, tj)InF (p)tj (4.20)

where T ′
ti

is the set of snapshots included in the sliding window centered on ti, and

∑
tj∈T ′

ti

w′(ti, tj) = 1. In this work we evaluate one special case, in which w′(ti, tj) =
1

|T ′
ti
|

for any tj ∈ T ′
ti
. In this way, the authority score A(i) in Equation 4.8 is determined by

both πp,i in Equation 4.19 and µp,i in Equation 4.20.
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4.4 Experimental Setup

4.4.1 Data set and relevance judgment

Most standard data sets such as those used at TREC [97] usually only contain one snapshot

of a web corpus, and so are not suitable to show the effectiveness of ranking models utilizing

temporal information. To evaluate our proposed method, we use a corpus of archival web

pages in the .ie domain collected by Internet Archive [70] from January 2000 to December

2007. This corpus contains 158 million unique web pages, and approximately 12 billion

temporal links. To avoid the influence of transient web pages, we extract one web graph

for each month from the sub-collection of pages for which we have at least 5 crawled

copies. These graphs comprises a collection of 3.8M unique pages and 435M temporal

links in total.

For ranking evaluation, we choose April 2007 as our time period of interest since

Internet Archive changed crawling policies right after April 2007. Ninety queries are

selected from a set of sources, including those frequently used by previous researchers,

and popular queries from Google Trends [65] (See Table 4.2 for details.). For each query,

we have an average of 84.6 URLs judged by at least one worker of Amazon’s Mechanical

Turk [7]. When human editors judge each <query,URL> pair, they are required to give a

score based on (1) how relevant the page is to the query; and (2) how fresh the page would

be as a result for the requested time period. The relevance score is selected from among

highly relevant, relevant, borderline, not relevant and not related, which is translated to
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an integer gain from 4 to 0. A page with a score higher than 2.5 is marked as relevant.

Similar to the relevance judgement, the freshness score is selected from very fresh, fresh,

borderline, stale, and very stale, which we translate into an integer scaled from 4 to 0. A

page with a score higher than 2.5 is marked as fresh. All human editors were asked to

give the confidence of their provided judgments, in the selection of high, medium and low.

Judgements with low confidence are not included in the ranking evaluation1. A random

sample with 76 <query, URL> pairs judged by 3 editors show that the average standard

deviations of relevance and freshness judgements are 0.88 and 1.02 respectively.

4.4.2 Ranking Evaluation

We evaluate the ranking quality of our approach on both relevance and freshness over the

Normalized Discounted Cumulative Gain (NDCG) [71] metric. It penalizes highly relevant

or fresh documents appearing at lower positions. Precision@k is also utilized to measure

ranking quality, which calculates the number of relevant or fresh documents within the

top k results across all queries.

To show the effectiveness of C-Fresh and T-Fresh, their outputs are combined with

Okapi BM2500 [107] linearly by ranks for ranking evaluation, defined as:

(1− γ)rankauthority(p) + γrankBM (p)

The parameters used in Okapi BM2500 are the same as Cai et al. [28].

1We will report the detailed judgment guidance in Chapter 5.4.
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2007 cricket world cup amazon american idol
angelina jolie arsenal barbie
baseball bbc sports best buy
bill clinton bird flu black friday
bmw ireland britney spears car zone
casino college football continental airlines
craigslist da vinci code democratic national convention
desperate housewives disneyland dublin bus
earthquake halloween costumes expedia
facebook firefox fox news
george w bush groundhog day hannah montana
harry potter hello kitty hip hop
housing bubble hurricane iphone
iraq war irish independent jennifer lopez
kill bill liverpool fc lord of the rings
lunar eclipse map of ireland medicine
meteor michael jackson mobile games
monet mtv myspace
national weather service nba netflix
new york times nfl obama
olympics schedule oscar nominations perl programming
pink floyd playstation poker
porsche presidential polls prince charles
prison break real madrid reuters
richard hammond rte tv skype
spring break staples starbucks
summer olympics super bowl terrorism
thanksgiving tom cruise tsunami
verizon wedding dresses whitney houston
wikipedia world cup youtube

Table 4.2: Set of ninety temporal queries used for relevance evaluation in IA data set.
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4.4.3 Web Activity Detection

While accurate web maintenance activities are recorded on Web servers’ logs, we infer such

activities from the comparison between successive web snapshots in this work since we are

not able to access the logs of most servers on the web. Specifically, we assume that each

page was created at the time at which it was first crawled, and each link was created when

it was first found. Although some pages can automatically change a portion of its content

in every crawl, we suppose one page has an update when its content has any difference

from the previous version, or its meta-data can show the last-modified time is after the

crawling time of the previous one. To identify the link update, we assume that once a

page has an update, all its out-links are considered to be updated. We admit that the

perfect quantification on link update activity may depend on a variety of factors, including

the distance to page blocks being changed, the burstiness of page editing frequency over

time, and so on. We leave the sensitivity of web activity detection accuracy on ranking

performance to future work. We also assume that a page disappears when its returned

HTTP response code is 4xx or 5xx. While the gain associated with each type of link and

page activity can influence the ranking performance, as a preliminary study, we define

these gains in Table 4.1, and leave the sensitivity of ranking performance with respect to

gains on web activity to future work.
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4.5 Experimental Results

In this section, we report the results of our ranking evaluation and compare C-Fresh and

T-Fresh with representative link-based algorithms. Our purpose is to demonstrate the

superiority of C-Fresh and T-Fresh. To do this, we ask the following research questions.

• Is there any relationship between InF and PF? Will they help predict future activity,

inferring web freshness at future time points? Will the propagation of activity influ-

ence helps better measure InF and PF respectively? To understand such questions

may help improve future temporal ranking models that also expect to incorporate

web freshness.

• C-Fresh: Does InF help improve search quality? Does the correlation between InF

and PF further boost search quality? If so, is such influence proportional to the time

span based on which the correlation is computed.

• T-Fresh: How does T-Fresh outperform the representative link-based ranking al-

gorithms that incorporate the temporal information? To what extent does T-Fresh

outperform those algorithms? Which components within T-Fresh result in its su-

periority? To explore such questions helps better understand the ways in which

T-Fresh works.

We will see that comparable experimental results—by incorporating web freshness, both

C-Fresh and T-Fresh can achieve more relevant and fresh search results.
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4.5.1 Correlation of InF and PF

We focus on the first research question in this section. As introduced in Section 4.2.2,

each page in the temporal graph associates with InF and PF. A reasonable criteria for the

good estimation of InF and PF would be their potential capability of predicting future

web activities even though the correlation between them would be rather small. To better

understand it, we compute the average correlation between web freshness scores at t and

web activities at future time points, i.e., t+ 1, t+ 2, etc., given by Equation 4.3 and 4.5.

From Figure 4.3 (a), ∆PF |tt−1 and future in-link activities show positive correlation,

with the strength inversely proportional to the time difference between the incremental

page freshness and future in-link activities. In most cases, the correlation is the greatest

when λPF and λInF are 0.6. It indicates that pages derive freshness scores from both

the activities on themselves and their neighbor pages via propagation. The correlations

between ∆InF |tt−1 and future page activities show similar trends (Table 4.3 (b)). One

may notice that the average correlation between ∆PF |tt−1 and in-link activities at t+1 is

0.0519, which is higher than that between ∆InF |tt−1 and page activities at t+ 1 by over

13.5%. One interpretation is that a page with very fresh content tends to attract new

in-links or existing in-links to validate in next time periods. From Table 4.3 (c) and (d),

the cumulative web freshness scores can show stronger correlation to future web activities,

varying with the decay parameter β2 and β4 given β1 = β3 = 1 constantly. For both PFt

and InFt, the correlations are the highest when β2 and β4 are 1 in most cases.

In summary, our observations are as follows.
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Figure 4.3: Correlation between web freshness and future web activities.

• The correlation between page and future in-link activities is stronger than the one

between in-link and future page activities.

• When incorporating the activities associated with neighbor pages, the correlations

between page (in-link) and future in-link (page) activities are stronger than the

correlations without considering the influence from neighbor pages.
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Relevance

Method P@10 NDCG@3 NDCG@5 NDCG@10

Okapi BM2500 0.4695 0.2478 0.2740 0.3344

PageRank 0.4894 0.2589 0.2840 0.3457

200601-200704 0.5021† 0.2917†† 0.3152†† 0.3675††

200401-200704 0.4893 0.3027†† 0.3201†† 0.3657††

200201-200704 0.5002† 0.3081†† 0.3157†† 0.3642††

200001-200704 0.4986† 0.3115†† 0.3211†† 0.3647††

Freshness

Method P@10 NDCG@3 NDCG@5 NDCG@10

Okapi BM2500 0.3138 0.2137 0.2379 0.2805

PageRank 0.3325 0.1946 0.2345 0.2838

200601-200704 0.3288† 0.2315†† 0.2490† 0.2979†

200401-200704 0.3342† 0.2329†† 0.2552†† 0.2988†

200201-200704 0.3361† 0.2416†† 0.2565†† 0.3027††

200001-200704 0.3374† 0.2477†† 0.2617†† 0.3028††

Table 4.3: Ranking performance comparison. A † means the performance improvement
is statistically significant (p-value<0.1) over Okapi BM2500. Performance improvement
with p-value<0.05 is marked as ††.

• When aggregating past activities, the correlations between page (in-link) and future

in-link (page) activities are stronger than the correlations without considering the

aggregation from past activities.

4.5.2 C-Fresh: Ranking Evaluation

We now focus on the ranking evaluation of C-Fresh. We set λPF = λInF = 1 and

β1 = β2 = β3 = β4 = 1 for computing InF and PF respectively without the loss of gener-

ality. Table 4.3 lists the ranking performance comparison varying the time span involved

in the combined page freshness computation. We use Okapi BM2500 and PageRank as
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Figure 4.4: Ranking performance on metric NDCG@3 while varying the time span involved
in page freshness calculation.

our baselines. For relevance, except for NDCG@3, the correlation between ranking per-

formance and the time span is not consistent. Unlike relevance, freshness performance

consistently improves with the increase of time span used in the combined page freshness

computation. This suggests temporal freshness correlation calculated from long-term web

freshness measures can benefit more from accurate page freshness estimation. Figure 4.4

shows the performance on NDCG@3 with the variance of the time span for both rele-

vance and freshness. We observe that (1) the ranking performance of page freshness first

decreases, and then keeps nearly constant with the increase in time span, indicating the

page activities within the past 1-2 years influence page freshness estimation the most;

(2) the ranking performance of temporal freshness correlation shows unstable trends with

variance of time span; and (3) the combined page freshness shows promising performance,

and demonstrates its superiority over either page freshness or TFC.
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Notation of T-Fresh variants: T-Fresh(kernel, window, snapshot)

kernel The kernel controlling authority propagation among
different web snapshots, where kernel ∈ {1, 2, 3, 4, 5, 6}

window The window size used in calculating average in-link
freshness for estimating staying time, where window ∈ N

snapshot The number of months spanned over the temporal graph
where 1 ≤ snapshot ≤ 88 (from Jan. 2000 to Apr. 2007)

Table 4.4: Notation of T-Fresh variants.

4.5.3 T-Fresh: Ranking Evaluation

We focus on the ranking evaluation of T-Fresh, aiming to answer the third research ques-

tion. We set λPF = λInF = 0.6 and β1 = β2 = β3 = β4 = 1 in the ranking evaluation

of this section. We compare with PageRank [23] (the baseline) and several representative

link-based ranking algorithms which incorporate temporal information, including Timed-

PageRank [133], T-Rank [17], BuzzRank [14], TemporalRank [129], and T-Random [85].

The variants of T-Fresh are summarized in Table 4.4.

Ranking Performance

Figure 4.5 demonstrates the ranking performance in terms of relevance and freshness on

metric P@10 over all the compared algorithms, under the variance of combination param-

eter γ from 0.8 to 1. The variant of T-Fresh we choose to compare is T-Fresh(1,1,30).

For relevance evaluation, PageRank achieves its highest P@10 at 0.4894 when γ is 0.97.

T-Fresh performs the best among all the algorithms, achieving its highest P@10 at 0.5051

when γ is 0.91, which is over PageRank by 3.2%. The TimedPageRank places the second on
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Figure 4.5: Sensitivity of P@10 with respect to combination parameter γ.

metric P@10, which reaches 0.5031 when γ is 0.92. For each method, we set the combina-

tion parameter γ such that it achieves the best performance on P@10 for comparison. The

ranking performance over all metrics is reported in Table 4.5. T-Fresh performs the best

among all the algorithms over all the metrics. Specifically, it outperforms PageRank over

24.7%, 17.8% and 7.8%, in terms of NDCG@3, NDCG@5 and NDCG@10. Single-tailed

student t-tests at a confidence level of 95% demonstrate the improvements are statistically

significant over PageRank on NDCG@3, NDCG@5 and NDCG@10, with p-values 0.0001,
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0.0001, 0.0016 respectively.

For freshness evaluation, Figure 4.5 (b) shows ranking performance on metric P@10,

varying with the combination parameter γ. T-Fresh demonstrates a stable trend on P@10,

which exceeds PageRank on all the experimental data points. Unlike relevance evaluation

in which improvements of other temporal link-based algorithms are not obvious, more

methods can produce fresher search results than PageRank. One reason is that these

temporal link-based algorithms incorporate diverse temporal factors, which favor fresh

web pages. T-Fresh reaches its best P@10 at 0.3412 when γ is 0.88, which is only inferior

to TemporalRank with its highest P@10 at 0.3473 when γ is 0.98. PageRank has its

best P@10 at 0.3325 when γ is 0.97. With individual best combination parameter γ on

P@10, we compare all the ranking algorithms over other metrics in Table 4.5. T-Fresh

outperforms PageRank in terms of NDCG@3, NDCG@5 and NDCG@10 over 23.8%, 13.5%

and 8.3%, with p-values 0.0090, 0.0260 and 0.0263 respectively. One observation is the

performance of PageRank on metric NDCG@3 is extremely low while its performance on

NDCG@5 and NDCG@10 are not so bad. We infer that stale web pages can achieve high

authority scores by PageRank, and so dominate top positions in search results.

Deeper Analysis

We study the effects of propagation kernels and window sizes used in the staying time

estimation on ranking performance in this section.

Figure 4.6 (a) and (b) show the best ranking performance of T-Fresh(*,1,*) on metric
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Relevance

Method P@10 NDCG@3 NDCG@5 NDCG@10

BM25 0.4695 0.2478 0.2740 0.3344

PageRank 0.4894 0.2589 0.2840 0.3457

BuzzRank 0.4770 0.2770 0.2980 0.3460

TemporalRank 0.4841 0.2706 0.2875 0.3524

TimedPageRank 0.5031 0.2830 0.3063 0.3587

T-Random 0.4904 0.2690 0.2877 0.3495

T-rank 0.4875 0.2669 0.2870 0.3496

T-Fresh(1,1,30) 0.5051 0.3229 0.3347 0.3729

Freshness

Method P@10 NDCG@3 NDCG@5 NDCG@10

BM25 0.3138 0.2137 0.2379 0.2805

PageRank 0.3325 0.1946 0.2345 0.2838

BuzzRank 0.3327 0.2043 0.2234 0.2797

TemporalRank 0.3473 0.2312 0.2510 0.2992

TimedPageRank 0.3398 0.2443 0.2514 0.2972

T-Random 0.3316 0.2054 0.2403 0.2879

T-rank 0.3356 0.2269 0.2498 0.2950

T-Fresh(1,1,30) 0.3412 0.2411 0.2662 0.3076

Table 4.5: Performance Comparison.
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(b) Freshness performance: NDCG@10

Figure 4.6: T-Fresh(*,1,*): Sensitivity of NDCG@10 with respect to kernel for authority
propagation.

NDCG@10 for relevance and freshness. For most kernels, the relevance performance im-

proves with the time span of the temporal graph, and reaches the highest in [30, 60], i.e.,

from 2.5 to 5 years. The improvements upon using single snapshot are 4.9%, 4.1%, 4.2%,

4.9%, 5.0% and 2.8% for gaussian, triangle, cosine, circle, passage and PageRank kernels

respectively. The passage kernel achieves a stable and best overall performance, followed
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Figure 4.7: T-Fresh(5,*,*): Sensitivity of NDCG@10 with respect to window size used in
the stay time estimation.

by gaussian and circle kernels. Results from triangle and cosine kernels show larger fluc-

tuations over time span of the temporal graph. Combining with the kernel expressions

defined in Equations 4.13-4.18, we conclude that the ranking improvements on relevance

benefit from appropriate emphasis on authority propagation between far away snapshots.

The ranking performance on freshness shows similar trends to relevance, though the

variance is typically larger. Except PageRank kernel, all the other ones can achieve their
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highest performance in the time interval [30, 60]. Passage kernel gets the best performance

0.3171 on metric NDCG@10 by outperforming the baseline (using a single snapshot) by

4.5%. One observation is that the performance of PageRank kernel suddenly falls down

to around 0.295 when the graph time span is beyond 30 months. One possible reason

is that the authority propagation among any distinct web snapshots become very weak

in PageRank kernel when the graph time span is large enough, and so historical link

structures only have tiny influence on page authority estimation at the current time point.

In addition, the freshness performance tends to stablize when the graph time span is over

70 months, which indicates temporal web graphs with long time span render more stable

ranking performance on freshness, and it reflects the long-term freshness of web resources.

Figure 4.7 (a) and (b) show the best ranking performance of T-Fresh(5,*,*) on metric

NDCG@10 in terms of relevance and freshness. For relevance evaluation, our results

demonstrate: (1) To use the average in-link freshness on several adjacent time points is

better than to use it at a single time point when estimating staying time. We infer that

average in-link freshness can render a good estimation about how active the page in-links

are during a time period; (2) It does harm to ranking performance on relevance when

the window size is too large; (3) Large window sizes result in large variance of ranking

performance when varying the number of snapshots in the temporal web graph; (4) The

ranking performance improves with the increase of graph time span in general for all the

window sizes. For freshness evaluation, a clear trend in Figure 4.7 (b) shows that a larger

window size used in staying time estimation helps generate fresher search results with

101



www.manaraa.com

4.6. SUMMARY

smaller deviation.

4.6 Summary

Dynamic web resources reflect how active web pages are over time. From the perspectives

of in-links and the page itself, we quantify web freshness from web creators’ activities. We

argue that web freshness is an important attribute of web resources, which can benefit

a series of time-sensitive applications, including archival search, news ranking, twitter

message recommendation, tag recommendation and so on.

In this work we propose two temporal ranking models, i.e., C-Fresh and T-Fresh,

both of which draw from the web freshness inferred from web page and link maintenance

activities. C-Fresh incorporates a temporal freshness correlation (TFC) component in

quantifying page freshness. Experiments show that by using TFC, we can achieve a good

estimate of how up-to-date the page tends to be, which is helpful to improve search quality

in terms of both result freshness and relevance. Such benefits are proportional to the time

span based on which the page freshness and the correlation between inlink and page

freshness are computed.

T-Fresh is a temporal web link-based ranking algorithm to estimate time-dependent

web page authority. It incorporates web freshness at multiple time points to bias the web

surfer’s behavior on a temporal graph composed of multiple web snapshots. Experiments

on a real-world archival corpus demonstrate its superiority over PageRank on both rel-

evance and freshness by 17.8% and 13.5% in terms of NDCG@5. Results show ranking
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performance can benefit more from long-term historical web freshness and link structure.

The best period covers the past 2.5 to 5 years.
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Chapter 5

Learning to Rank for Freshness

and Relevance

5.1 Introduction

The query stream seen by a web search engine and the interpretation of those queries

change over time. Previous analysis has shown that web logs clearly reflect daily events in

user queries [32]. For example, during seasonal events such as Halloween, there are always

spikes in the frequency of related queries such as “halloween”, “halloween costumes” and

“pumpkins” (Figure 5.1). For many of the queries that correspond to events, the best

answer may change over time (e.g., the latest SIGIR conference homepage for the query

“sigir conference”). In more extreme cases, the major intent behind the same query can

temporally vary; for instance, the query “US open” is more likely to be targeting the
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tennis open in September, and the golf tournament in June (Figure 5.2). Kulkarni et

al. [81] refers to this class of temporally ambiguous queries as shift topics.

News events, depending on their significance, can cause enormous growth in frequency

of related queries.1 It is also not uncommon for news events to change the general meaning

of a query. For example, the query “ipad” which could be treated as a misspelling for

“ipod” in 2009, suddenly turned into a valid query with several related websites in 2010.2

Therefore, making search engine results appear current and fresh is important to satisfy

users’ ever-changing information needs.

In this chapter, we focus on improving the ranking of results for queries based on their

temporal profiles. Of course, the importance of the temporal profiles of queries extends

beyond web result ranking; advertisement rankers have to address similar problems; re-

lated search and auto-complete suggestions must provide users with fresh and relevant

alternatives to their queries; vertical search [49] ranking and triggering can be affected by

temporal changes; and in general, the entire search experience can be influenced according

to the temporal aspect of a query.

Learning ranking functions that can respond effectively to diverse temporal dynam-

ics of queries is challenging. One of the difficulties is that traditional machine learning

ranking algorithms fail to consider the interaction between freshness and relevance. While

1For example, the traffic caused by queries related to Michael Jackson’s death in 2009, was so huge

that Google mistook it as an attack (Source: Google Blog, 26 Jun 2009 [64]).
2It is probably still the case that some people mistype ipod as ipad. However, this group no longer

represents the majority.
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relevance clearly quantifies the topical matchability between query and web pages, fresh-

ness can be interpreted in different ways. For certain temporal queries such as breaking

news, freshness is more meaningful when the actual page content reflects new informa-

tion. Whereas, for non-temporal (time-insensitive) queries, it makes more sense to in-

terpret freshness as the recency of page maintenance with respect to the time point of

generating ranking lists (suppose web pages contain such information). Therefore, these

two interpretations for freshness may be correlated to some extent but are not the same,

considering that pages updated recently tend to record fresh information. It is worthwhile

pointing out that both explanations can be part of the overall quality of search results

that influences user search experience. In this work, the definition of freshness is sensitive

to query temporal characteristics, varying on whether human editors (judges) can identify

temporal intents concealed within queries. (See Section 5.4.3 for details.)

For certain temporal queries such as breaking news, relevance and freshness are highly

correlated. Therefore, a ranker optimized for returning fresh documents may produce

satisfactory results. However, for queries that are not usually time-sensitive (e.g., “face-

book”, “machine learning”), paying too much attention to freshness may significantly

hurt ranking effectiveness in terms of relevance. Among common ranking features, clicks,

anchor-text and historical data might be the most powerful for answering time-insensitive

queries. For temporal queries however, other features such as the rate of content change

in documents may provide better signals [81]. Therefore, a ranker optimizing either fresh-

ness or relevance only may not be flexible enough to deal with the temporal dynamics of
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queries effectively.

To address this issue, previous work [20, 50] suggested training separate rankers for

different classes of queries. The query is first classified according to its temporal profile,

and then is sent to the appropriate ranker that has been optimized for either relevance

or freshness. The main disadvantage of classification-based techniques is that selecting a

wrong ranker due to misclassification can significantly degrade performance.

We propose a machine learning model that optimizes freshness and relevance simulta-

neously. Our flexible framework allows training multiple rankers with different optimiza-

tion functions, and runs each query against all rankers with weights varying according

to the query’s temporal profile. This is in contrast with existing solutions that suggest

selecting one ranker per query, and consequently has a lower risk of poor performance

when queries are misclassified. In addition, instead of splitting the labeled data to train

separate rankers, our technique leverages the entire data set in training all rankers. This

approach is the first attempt to incorporate the trade-off between freshness and relevance

into a single ranking framework.

Our work can be regarded as an extension to the family of divide and conquer (DAC)

techniques for ranking [19]. In DAC, queries are clustered based on their feature represen-

tations, and separate rankers are trained with each for one cluster simultaneously. At test

time, the query is compared against the generated cluster centroids and is ranked under all

rankers with the weights depending on query-cluster similarity values. We follow a similar

path since DAC enables specialized ranker training by considering query features, but we
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Figure 5.1: The query histograms for “Halloween”, “pumpkin” and “Halloween costumes”
since 2004 as reported by Google insight for search. It can be seen that the queries follow
similar temporal patterns.

incorporate multiple criteria (freshness and relevance) into ranking optimization. We also

modify the DAC loss function by introducing a new query-document importance factor

that emphasizes certain documents during training, and leads to further improvements in

the results. Our experiments on a large web archive demonstrate that the rankers trained

by our techniques can achieve better relevance and freshness compared to state-of-the-art

alternatives.

5.2 Criteria-Sensitive Ranking

In this section, we introduce our criteria-sensitive divide-and-conquer ranking framework

(denoted as CS-DAC) that incorporates the balance between relevance and freshness into

training customized rankers that optimize both freshness and relevance.

108



www.manaraa.com

5.2. CRITERIA-SENSITIVE RANKING

Figure 5.2: The query histogram for “us open”, “us open tennis” and “us open golf” since
2004 as reported by Google insight for search. This example shows how the majority
intent for a query can change over time.

5.2.1 CS-DAC framework

A typical ranking function f with ω parameters takes a query-document feature vector X

as input and produces ranking scores of documents.

ŷ = f(X, ω) (5.1)

The common goal of learning to rank systems is to find a ranking model f∗ that takes

query-document feature vectors as input, and produces a document ranking—as close as

possible to the oracle ranking of documents according to their relevance labels y—by

minimizing the ranking risk aggregated from the loss L of all training queries.

f∗ = argmin
f

∑

q

L(f(Xq, ω),yq) = argmin
f

∑

q

L(ŷq,yq)
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By considering query differences in the DAC framework, we essentially cluster3 training

queries based on their ranking characteristics, and train one ranker per cluster. Each

query contributes to learning all rankers with different importance based on its topical

affinity to query clusters. Each ranker f∗
i is learned via:

f∗
i = argmin

fi

∑

q∈Q

I(q, i)Li(ŷq,yq) (5.2)

where Q is the training query set, and I(q, i) is the importance of query q with respect to

the ith ranking model.

To account for relevance and freshness simultaneously, we propose to use hybrid labels

that are generated based on freshness and relevance judgments.4 For this purpose, we

exploit a weighted harmonic mean function which maps relevance and freshness grades

(i.e., yRq,d and yFq,d on the query-document pair <q, d>) to a single equivalent numerical

score ỹq,d for training f∗
i . We believe harmonic mean is appropriate here since (1) it

heavily biases towards the minimum score; (2) it is more sensitive when yRq,d and yFq,d are

close; and (3) it has been shown as a good optimization metric for tasks such as learning

to rank for efficiency [118] and classification. Formally, ỹq,d,i is defined as:

ỹq,d,i =
(1 + β2

i ) · y
R
q,d · y

F
q,d

yRq,d + β2
i · y

F
q,d

(5.3)

where parameter βi sets the trade-off between relevance and freshness for each ranker,

and is learned during training. Allowing different values of β for rankers enables a flexible

3We use query cluster, topic and category interchangeably.
4Generating hybrid labels (single aggregate objective functions), is a simple form of multi-criteria

optimization [115].
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framework where each ranker can assign different weights to freshness and relevance. It

also means that each query-document pair may affect the pairwise learning of each ranker

differently.5 Therefore, we factorize query-document pair importance as follows:

f∗
i = argmin

fi

∑

q∈Q

I(q, i)×

∑

<d1,d2>∈Dq

U ′(q, i, d1, d2)Li

([ ŷq,d1,i

ŷq,d2,i

]
,
[ ỹq,d1,i

ỹq,d2,i

])
(5.4)

where, Dq is the set of preferential query-document pairs with respect to query q, and

U ′(q, i, d1, d2) is the importance of <d1, d2> in training for query q with respect to the ith

ranking model. For simplicity, we assume <q, d1> and <q, d2> are independent, and so

factorize the importance of the preferential pair U ′(q, i, d1, d2) as follows.

U ′(q, i, d1, d2) = U(q, i, d1) · U(q, i, d2) (5.5)

where U(q, i, d1) is the importance of query-document pair <q, d1> in training for query

q with respect to the ith ranking model.6

5.2.2 Ensemble ranking

Given an unseen query q′, we first profile its query characteristics, and then calculate its

distances to the centroids of existing query clusters c1, c2, . . ., cn. The trained ranking

functions are then scored according to the normalized distance between the query and

5Similar ideas can be applied to list-wise and point-wise ranking learning algorithms.
6The independence assumption is unrealistic, but we believe it is not unreasonable because if two

query-documents pairs are important, then so is their preferential pair.
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their corresponding clusters (a.k.a. query importance I), given by:

Wi =
I(q′, i)∑n

i′=1 I(q
′, i′)

(5.6)

The query q′ is run against all n rankers (one for each cluster), and the final results θq′

are produced according to the ensemble ranking of their outputs. That is,

θq′ =
n∑

i=1

Wif
∗
i (Xq′ , ωi) (5.7)

where f∗
i is the ith ranking model, Xq′ is the query-document feature vectors for query q′,

and ωi is the feature weights.

The CS-DAC framework summarized in Equation 5.4 consists of three main factors:

query importance (I), ranker-specific query-document importance (U), and the loss func-

tion (L). We continue by describing each of these items.

5.2.3 Query importance (I)

In the divide step of the DAC framework, the query space is split into a few clusters

based on criteria-sensitive features. These are the features that are extracted from the

top-ranked documents of a basic reference ranker (BM25 [104] in our work) for the query.

We will provide more details about these features in Section 5.4.5.

The I(q, i) values provide a Binomial distribution over each of the criteria-sensitive

query clusters, and specify the importance of different ranking functions. We use a Gaus-

sian Mixture model as a soft k-means clustering to group queries into clusters. The
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importance of query q with respect to the ith cluster is thus given by:

I(q, i) = 1−
‖pq − ci‖

2

maxq′∈Q ‖pq′ − ci‖2
(5.8)

where pq and ci respectively denote the feature vectors of query q and the centroid of

the ith cluster, and Q represents the set of training queries. Therefore, I(q, i) is scaled

between [0, 1], and is inversely proportional to the distance between query feature vector

pq and cluster centroid ci.

5.2.4 Document importance (U)

In pairwise learning to rank methods, the importance of a document with label y during

training depends on the number of times it is compared to other documents with different

labels. Due to the ranker-specific value of β which is set during training, a query-document

pair with the same relevance and freshness grades can get unequal hybrid labels under

different rankers, and hence may contribute unequally in training various rankers. Besides,

centralizing hybrid label distribution within each query cluster stabilizes the correlation

between freshness and relevance, which further emphasizes the effect of βi in Equation 5.3.

To factorize these impacts, we introduced the U component in Equation 5.4. We estimate

the importance of a query-document pair with label yq,d by the likelihood of visiting that

label in the training dataset, under the assumption that the importance of a hybrid label is

proportional to the ratio of query-document pairs with that label in the training dataset.
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We define the document importance U as below.

U(q, i, d) =

∑
q′∈QN(q′, i,yq,d) ·N(q′, i,¬yq,d)∑

y’∈Yi

∑
q′∈QN(q′, i,y’) ·N(q, i,¬y’)

(5.9)

where Yi is the space of labels for ranker i, and Q denotes the training query set. The num-

ber of documents with and without label y are represented by N(q, i,y) and N(q, i,¬y).

Equation 5.9 can be regarded as a function of the unique hybrid label yq,d, and is denoted

as w(yq,d) for short.

There are two potential problems with this type of normalization: (1) additional inter-

label dependencies may arise from comparing common labels (e.g., ya and yb, versus yb

and yc), and, (2) overemphasizing certain documents inevitably introduces bias in ranking.

To overcome these issues, we exploit a random walk approach to determine U (instead of

Equation 5.9) that has the effect of smoothing document importance values.

To perform a random walk, we first construct a fully connected bipartite graph G(V,E)

(one graph per ranker) in which each node (state) v stands for a unique hybrid label y

(associated with the weight w(y)), and each edge e is associated with a weight computed

according to the number of times the labels of the connected nodes compare with each

other during training. At each step, the random walk surfer jumps to a random node

with probability d (selection among random nodes is proportional to w(y) values) or

follows some connected edge with probability 1− d (the selection among connected edges

is proportional to the weights on edges). The value of d can be pre-defined or set during

the training and validation. When d equals 1, the probability that the random surfer

reaches every node (state) is proportional to the direct comparison between preferential
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query-document pairs with different hybrid labels. Whereas, d = 0 suggests document

importance entirely propagates through indirect comparison between preferential query-

document pairs. Parameter d actually controls the extent that such propagation (from

indirect comparison) influences the computation of document importance. We analyze the

importance of U , with and without smoothed probabilities in Section 5.5.4.

5.2.5 Loss function (L)

The core of each ranker in our CS-DAC framework is a loss function that is trained for

hybrid labels (Equation 5.3). We follow Bian et al. [20] and use RankSVM [72] as our

basic learning algorithm although it is important to note that the framework is flexible

and not restricted to any particular learning technique.

RankSVM [72] is designed to maximize the margin between positively and negatively

labeled documents in the training data by minimizing the number of discordant pairs.

The RankSVM optimization problem is defined as:

arg min
ω,ξq,i,j

1

2
‖ω‖2 + C

∑

q,i,j

ξq,i,j subject to (5.10)

∀yqi � yqj : ωTXq
i ≥ ωTXq

j + 1− ξq,i,j,

∀q∀i∀j : ξq,i,j ≥ 0

where the non-negative slack variable ξq,i,j is used to approximate the NP-hard optimiza-

tion solution by minimizing the upper bound
∑

ξq,i,j. Parameter C sets the trade-off

between the training error and the margin size. The query-document feature vectors for
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documents i and j are respectively represented by Xq
i and Xq

j . The notation yqi � yqj

implies that the document i is ranked higher than document j with respect to query q in

the training dataset (i has the same or higher relevance than j).

CS-DAC modified the RankSVM loss function by incorporating query importance (I)

and document importance (U). Formally, the ith ranking model of CS-DAC is optimized

via:

arg min
ωi,ξq,j,k

1

2
‖ωi‖

2 + C
∑

q,j,k

ξq,j,k (5.11)

subject to, ∀ỹq,j,i � ỹq,k,i : I(q, i)U(q, i, j)ω
T
i X

q
j

≥ I(q, i)U(q, i, k)ωT
i X

q
k + 1− ξq,j,k,

∀q∀i∀j : ξq,i,j ≥ 0

where ξq,j,k is the slack variable and parameter C sets the trade-off between training error

and the margin size.

In CS-DAC, several rankers are trained simultaneously, and each ranking function f∗
k

(see Equation 5.4) is optimized using the CS-DAC loss function and hybrid labels. The β

values are tuned via hill climbing based on the hybrid NDCG values of the final ranking

lists merged from different rankers. That is, each ranker is trained on different values

of β and the best combination of rankers is chosen by hill climbing on the training and

validation data. Here, hybrid NDCG extends the commonly used evaluation metric NDCG

[71] to take hybrid labels for evaluation, since this new freshness-sensitive metric can take

into account both freshness and relevance into a single measurement, aiming to quantify
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the overall search quality. Formally, we define hybrid NDCG as below:

hybrid NDCG(n) = Zn

n∑

j=1

2(γyR+(1−γ)yF ) − 1

log2(j + 1)
(5.12)

where Zn is the oracle discounted cumulative gain at ranking cutoff n, that bounds the

NDCG values between 0 and 1. The yR, and yF values—also known as gains—are assigned

according to the relevance and freshness labels of documents. Parameter γ specifies the

trade-off between relevance and freshness and is set to 0.5 in our experiments. Note that

γ = 1 turns hybrid NDCG into typical relevance-based NDCG, while setting γ to zero,

makes it the same as the NDCF metric [51]. Dai and Davison [41] also adopted NDCG

with freshness labels, although they did not refer to it as NDCF. While other combination

forms may better fit the search utility that quantifies comprehensive users’ satisfaction,

we leave the best definition of hybrid NDCG for future work.

5.3 Multi-objective Optimization in Ranking

One may notice that the way that criteria-sensitive ranking leverages freshness and rele-

vance is through the hybrid label defined in Equation 5.3. While the parameter β controls

freshness-relevance trade-off within a harmonic function, it is unknown whether harmonic

mean is the most appropriate way of combining multiple ranking criteria more generally.

In this section we focus on this problem. It is not a trivial problem since these ranking cri-

teria may interact with each other in a query-dependent manner. Relevance and freshness

with respect to breaking news queries is one such example [50]. Similar scenarios exist
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in the information filtering and recommendation domains, where users’ ratings on several

aspects may correlate with each other depending on user profiles, and consequently affect

the prediction models of user preferences on items [89].

Prior work that considered users’ multi-criteria objectives in search or collaborative

filtering have been mostly inspired by multi-criteria decision making (MCDM) theory

from the operations research community [115]. The preference between different criteria

is quantified by utility measures that affect optimization through preference model rep-

resentation. The commonly used preference models for search or recommendation tasks

include value-focused models [118, 123] and outranking relations models [56]. While these

approaches exploit the search quality on each aspect (criterion-specific ratings) to enhance

overall quality (measurement ratings), they ignore the inter-relationship between different

objectives.

In this section, we explore the influence of interactions and correlations between mul-

tiple criteria for ranking optimization in the context of web search. As a preliminary step,

we analyze the influence of bi-criteria inter-relationship on pairwise ranking models though

the analysis can be generalized to other multi-criteria scenarios. While the definition of

measurement utility is an open issue, we use the minimum relative ranking improvement

on both criteria (denoted as RelImp) to measure the influence of bi-criteria optimization,

emphasizing its relative benefits compared to optimizing for each single objective. We

define RelImp as follows:

RelImp =
minc,obj[perf(c, bi-obj) − perf(c, obj)]

perf(c, obj)
(5.13)
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where perf(c, ∗) is the performance on criteria c when optimizing for objective “∗”. Our

research explores the effect of correlation between two ranking criteria on the benefit of

bi-objective ranking optimization, focusing on three main issues: (1) what is the corre-

lation scale that can benefit RelImp? (2) how much benefit can it bring? and (3) what

does a useful preference model look like under different correlation scales? We exploit a

value-focused preference model implicitly for ranking optimization through minimizing bi-

criteria ranking risk based on hybrid labels that combine the quality of documents on both

aspects. We will demonstrate that the correlation between multiple objectives (freshness

and relevance in our case) may influence the outcome of multi-criteria on ranking opti-

mization in Chapter 5.5.

5.3.1 Methodology

Given a query q and its associated documents d1,. . .,dn, each query-document pair <

q, dk > is rated based on its quality on each facet, i.e., y
(1)
q,dk

and y
(2)
q,dk

. By exploiting

hybrid labels to combine the overall quality, we average the score achieved on each aspect

as the hybrid label for < q, dk >, defined as:

ỹq,dk =
( 1
n
·

n∑

i=1

(y
(i)
q,dk

)m
) 1

m (5.14)

where n = 2 is the number of facets (e.g., freshness and relevance), and m determines the

type of hybrid label function; quadratic mean (QM), arithmetic mean (AM), geometric

mean (GM) and harmonic mean (HM) respectively for m = 2, m = 1, m → 0 and m = −1.

These variants reflect how sensitive the hybrid label is with respect to the lower (higher)
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rating scores on both aspects, assuming that the rating scores on two aspects fall into

the same scale. We believe this perspective is reasonable since the criteria for judging

query-document pair quality may vary from one person to another. We also include two

extreme cases, i.e., MIN and MAX, representing the minimum and maximum rating scores

on two aspects.

Pairwise ranking learning algorithms train a set of parameters ω by minimizing the

ranking risk aggregated from loss of misclassified preferential query-document pairs based

on relevance. By exploiting hybrid labels, we optimize model parameters by:

f∗ = argmin
f

∑

q∈Q

∑

<di,dj>∈Dq

L(ŷq,di , ŷq,dj , ỹq,di , ỹq,dj) (5.15)

where Dq is the set of preferential query-document pairs for query q, and L is the loss

function that penalizes < di, dj > if its predicted preferential relationship (based on ŷq,di

and ŷq,dj) is discordant with groundtruth (based on ỹq,di and ỹq,dj ). We use RankSVM [72]

as our basic ranker. We note that the loss function defined on preferential query-document

pairs < di, dj > is a linear combination of the loss on each criterion (i.e., quantifying how

much the prediction of the relative preference between di and dj is inconsistent with the

users’ judgements on each individual criterion), with the coefficient depending on the

actual rating scores for di and dj on both criteria (groundtruth).

5.3.2 Generality

The preference between URL i and j can be represented by I(yRi > yRj ) for pair-wise

ranking learning algorithms, where I(yRi > yRj ) is an indication function, achieving 1 if
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Name Mapping Function f c(y1i , y
2
i , . . . , y

n
i ; y

1
j , y

2
j , . . . , y

n
j )

AM 1
n

∑
k y

k 1
n
|∆yc|

GM n

√∏
k y

k (
∏c−1

k=1 y
k
i )(

∏n
k=c+1 y

k
j )|∆yc|

HM ( 1
n

∑
k

1
yk
)−1

n
∏

k′ 6=c
yk

′

i
yk

′

j
|∆yc|

(
∑n

k=1

∏
k′ 6=k

yk
′

i
yk

′

i
)(
∑n

k=1

∏
k′ 6=k

yk
′

j
yk

′

j
)

QM
√∑

k(y
k)2 (yci + ycj)|∆yc|

Table 5.1: f c in linear combination among multiple criteria.

yRi > yRj is true, else -1. When extending to multiple criteria, we have the following claim.

Claim 5.3.1 Given URL i and j, the preference based on y’ linearly correlates with the

preference based on yc, where c is one type of criteria, such as relevance or freshness.

Formally,

I(∆y′ > 0) = I(
∑

c

f c(y1i , . . . , y
n
i ; y

1
j , . . . , y

n
j )I(∆yc > 0) > 0) (5.16)

where y′s are the comprehensive scores for URLs, and ycs are the actual rating scores on

criterion c for URLs. ∆y′ = y′i−y′j, and ∆yc = yci −ycj . They measure the difference of the

comprehensive scores and rating scores on criterion c between preferential pair < di, dj >.

f c is a coefficient of ∆yc functioning on the scores of all criteria associated with i and j,

and n is the number of criteria.

We summarize f c for all proposed mapping functions in Table 5.1. It clearly shows how

the multi-criteria-based scores mutually determine the instance-dependent importance on

each criteria for learning ranking models.
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Figure 5.3: The STL decomposition (a seasonal-trend decomposition procedure based on
Loess) [37] of a time series into seasonal, trend and remainder components. The data is
generated from the click histogram of the query jingle bells in a commercial search engine.

5.4 Evaluation Platform

5.4.1 Introduction

We presented the way of incorporating the temporal characteristics of queries into learning

to rank systems in Chapter 5. To show the effectiveness of our proposed approach, this

chapter focuses on how we built the evaluation platform. The purpose of this evaluation

platform is to provide a relatively objective environment for comparing multiple ranking

systems on relevance and freshness of their search results. Such a platform includes

• a web corpus and queries (Section 5.4.2);

• relevance/freshness judgements (Section 5.4.3);
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• ranking features (Section 5.4.4);

• query cluster features (Section 5.4.5);

We introduce them one by one. We will present the evaluation results in Chapter 5.5.

5.4.2 Testbed data

Standard learning to rank datasets only contain relevance judgments for query-document

pairs without any information regarding their freshness. The query-URL pairs are typically

characterized by dynamic features (e.g., BM25, tfidf) and static features (e.g., PageRank

score). Document temporal features are not included to better respond to diverse query

temporal characteristics. Based on these concerns, common publicly available datasets

are not suitable for our experiments.

We built a new testbed based on a large archival web corpus that is the same as the

one used in Section 4.4. Our dataset contains 158 million unique URLs and 12 billion links

from the .ie domain, covering the time span from January 2000 to December 2007 (one

snapshot per month and 88 in total). We removed pages with less than five snapshots,

and only kept the remaining 3.8 million unique pages with 435 million links in total.

We choose April 2007 as our time point of interest for ranking evaluation. We con-

structed two temporal and non-temporal query sets, each containing 90 queries. While

the query size is small, the queries in the temporal set are manually selected from Google

Trends suggestions for Ireland, which were popular during April 2007 [65]. These ninety

queries are the same as those in Table 4.2. For the non-temporal set, we first randomly
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sampled queries from a 2006 MSN query log (i.e., generating a representative query sample

from a real-world search log), and then automatically filtered out about 10% of them that

were detected as potentially temporal by a commercial classifier. The classifier has high

precision (almost all Google Trend queries are detected as temporal), and uses several

years of the query-frequency history extracted from the query logs of a major commercial

search engine. We report the ninety non-temporal queries in Table 5.2.

5.4.3 Judgments and metrics

To evaluate the quality of search results based on our testbed, we choose to use Amazon

Mechanical Turk7 to collect the groundtruth, i.e., the freshness and relevance labels of

query-document pairs. Amazon Mechanical Turk is an open and convenient marketplace

for working on human intelligence tasks (HITs). Representative HITs include but are not

limited to basic open-ended questions, categorization, and surveys. Requesters bid their

HITs and appeal to the workers who are interested to work on these HITs. The reasons

that we select Amazon Mechanical Turk (AMT) to collect our groundtruth are: (1) it

provides easy, cheap and fast labeling; (2) it maintains a ready-to use infrastructure; and

(3) it allows early, iterative, and frequent experiments [5]. Given such advantages, AMT

has been a proven crowdsourcing platform for major IR shared task evaluations.

Given a query-document (URL) pair, the judges were instructed to assess the quality

of the URL with respect to both relevance and freshness. For relevance, the selection was

7http://www.mturk.com
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hawaii child custody autocad lt
core youth leader training hardcore movie download
gateway community college wvde job bank
middle bay country club quest diagnostics
folding closet doors wood floor finishers in the chicago area
kelly blue book how to sell a service based company
babe ruth home runs motels naples fl
vacations for seniors kgo am radio
layered cake and pudding recipe sex with ouji
levaquin and class home inspection hamilton ohio
ups track faith reformed church
dcx co car programs lease boat building stargate atlantis rachel luttrell download

critical mass
beautiful cheerleaders of the chivas image line ezgenerator
fintess center floor plans adobe mountain school
parrandero means monterey hotels reviews
real men of genius zip code crestview florida
ebay motors funny quotes
mail combined metals inc. nevada
walmart cakes hill high school
gm parts rockdale citizen
wse verify trust steel riders mc
cheap ipod ganley motors
american airlines house value
las vegas bake dbean with hamburger recipes
concan texas photo of naked women
models femen norwegian cruise
compact tractor discount highest credit score
nj lottery results massage harmony austin
deer feeding recipes wells fargo
best non-composite slow pitch softball bats osha government
spencer studio dirt race car kazaa 2.6 patch connect
music darkblondie spain
maps five year old complains of legs hurting
symptoms of heat stroke alkyphenols structure
kids dada supreme agape christian fellowship church in virginia
the lavon affair hotmail
mission to nigeria extrajudicial cna boat moak
world of outlaws elm and red river
njaac national plant city vets id stolen
santo security assessing student learning
jean vest dillion beach northern california
cronin attorney liberalism and colonial america
portuguese steak sandwish recipe faa far part 91
window treatments lincoln nebraska ford focus
coach david elson australian flowrs

Table 5.2: Set of ninety non-temporal queries used for ranking evaluation in IA data set.
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among highly relevant, relevant, borderline, not relevant and not related, which was further

translated to integer gains ranging from 4 to 0. For freshness, editors were instructed

to judge the URL freshness for the given query according to our chosen point in time

(April 2007).8 Judges could select between very fresh, fresh, borderline, stale, and very

stale, which we transferred into {4, 3, 2, 1, 0}. Judges were also required to provide the

confidence of their judgements by choosing between high, medium and low. Judgments

with low confidence were resubmitted for labeling. Table 5.3 shows the guideline of query-

URL pair judgments used by Mturk workers. Figure 5.4 gives one example of HITs that

we designed for evaluating the freshness and relevance of query document pairs. We set

the reward per assignment to 5 cents. We only select the participants whose past HITs

approval rate was greater than or equal to 95%. The standard deviations of relevance and

freshness judgements on a random sample of 76 query URL pairs among three judgers are

0.88 and 1.02 respectively. We have an average of 71 URLs per query judged by one or

more participants from AMT.

Freshness and relevance are evaluated by hybrid NDCG, and so when γ = 0 or γ = 1,

this corresponds to NDCF [51] and NDCG, respectively.
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Figure 5.4: An example of HITs used for evaluating the freshness and relevance of query
document pairs.
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Table 5.3: Relevance and freshness judging guidelines for mechanical turk editors.

1. Relevance Evaluation.
Imagine you searched for ”Mechanical Turk” in Google and got back a list of URLs
in your results.

• A result of ”www.mturk.com” would be a highly relevant match.
• A blog entry or news about working on Mechanical Turk would be relevant.
• A story about a person’s daily life in which Mechanical Turk is mentioned in one

sentence is treated as borderline.
• A story about an airplane in Turkey having had mechanical problems shortly

after take off is not relevant.
• A story about a child eating fruits is considered not related.

2. Freshness Evaluation.
Use your knowledge about the query, combined with the time clues on the web page,
including the time that the author wrote the story, the timestamp in copyright areas,
etc., to judge whether the page is fresh or not, suppose you are in around April 2007.
Now imagine you searched for “2007 cricket world cup” in Google around April 2007
and got back a list of URLs in your results.

• A news reporting the story of 2007 cricket world cup on previous one day would
be very fresh.

• A critique about the fact that the ireland cricket coach is murdered in April 2007
is fresh.

• An introduction about the preparation of ireland cricket team for the world cup
written in September 2006 is treated as borderline.

• A comment about stories in 2003 cricket world cup written in 2004 is stale.
• The introduction about the schedule of 2003 cricket world cup is very stale.

Table 5.4: Temporal ranking features used by RankSVM in the CS-DAC framework and
baseline methods. The features (except for TPR) are produced from the STL decomposi-
tion [37] of time series generated from the content changes in title, body, heading, anchor,
and page/link activities [41].

Feature name Feature description

Slp(τ) Slope of trend component Tτ .
Amp(τ) Amplitude of seasonal component Sτ .
Rp(τ) Relative position in Sτ .
Cs(τ) Confidence of seasonality.
Cr(τ) Confidence of regularity.

TPR Timed PageRank [133].
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Table 5.5: The way of fold splitting.

Run Training Set Validation Set Test Set

1 folds 1,2,3 fold 4 fold 5
2 folds 2,3,4 fold 5 fold 1
3 folds 3,4,5 fold 1 fold 2
4 folds 4,5,1 fold 2 fold 3
5 folds 5,1,2 fold 3 fold 4

5.4.4 Ranking features

Each individual query-document pair is characterized by a feature vector when training

rankers. These features can be grouped into non-temporal and temporal ones. The non-

temporal features include several commonly used text-similarity scores such as BM25

[107], and language modeling [136], computed over different fields of documents (heading,

title, body). They also include a few well-known link-based static features such as the

number of inlinks and PageRank [23]. We have 97 non-temporal features in total.9 To

avoid the over-fitting problem, we proceed a simple feature selection. First, we train and

evaluate a rankSVM ranker based on five-fold cross-validation. We split 90 temporal and

non-temporal queries respectively into five folds in a sequential way. We present how we

conduct five-fold cross-validation in Table 5.5. Second, we select the top n discriminative

features (n = 27), i.e., the features corresponding to the largest coefficients in our rankers,

as the final ranking feature set, listed in Table 5.6.

8Admittedly, judging for freshness according to an arbitrary time in the past could be a difficult task.

However, the choice was dictated to us by the time span of our dataset.
9See http://wume.cse.lehigh.edu/~nad207/temporalquery/featurelist.pdf for details (from Fea-

ture 1 to 91).
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The temporal ranking features are generated by measuring the changes in the contents

of documents with respect to their previous snapshots. For this purpose, we build a time

series of each document’s content changes, by going through the entire time span and

comparing the TFIDF similarity of the document at each point with the previous and

next versions. We generate separate time series for different document fields (heading,

title, body), and use STL seasonal-trend decomposition [37] to decompose each time series

τ into trend (T ), seasonal (S) and remainder (R) components.

STL(τ) = Tτ + Sτ +Rτ (5.17)

The same steps are repeated to decompose the time series generated based on link

and page activities (create, remove, update) [41]. Figure 5.3 depicts an example of STL

decomposition on a time series. In this instance, the time series (data) is generated

from the frequency distribution of the query jingle bells in the logs of a commercial search

engine. The same decomposition can be applied to a sequence of TFIDF scores, PageRank

values or any other type of time series data. We use the output of STL decomposition

for different time series to generate our temporal ranking features as summarized in Table

5.4. The details of each individual feature are as follows.

• Slp: Slope of Ti. It captures the speed of field content change in the long term.

Previous work on mining anchor text trends for retrieval [42] has demonstrated the

change of historical anchor importance weights on ranking effectiveness. We infer

that this feature can boost ranking performance in a similar way.
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• Amp: Amplitude of Si. It captures the scale of field content change speed in each

year. We conjecture that obvious change on field content maintenance speed within

each year may be a good sign for answering seasonal queries, and so we hope this

feature can be especially useful for seasonal queries.

• Rp: Relative position of the current time point (i.e., our interested time point

for ranking evaluation) with respect to the nearest peak and valley values of Si

component, defined as
|highest slp|−|lowest slp|
|highest slp|+|lowest slp| , where highest slp and lowest slp

are the slopes of lines connecting from the value at current time point to its nearest

peak and valley values on Si respectively. We conjecture that ranking performance

is sensitive to query temporal position within its period, and so use this feature to

suggest the insight to how relevant web pages are for a given query to some extent.

• Cs: Confidence of seasonality. It represents how well the time series can be explained

by Si versus Ti, defined as
∑

i |Si|/
∑

i |Ti|.

• Cr: Confidence of regularity. It indicates how well the time series can be interpreted

by Si or Ti, defined as (
∑

i TS
w
i /

∑
i TSi)/(1 − w/100), where TSw

i belongs to the

top w% points which are closest to TSi/Ri = Si × Ti, and w is 80 by default in this

work.

Note that Cs and Cr directly incorporate the confidence of Slp, Amp, and Rp into

document feature representation. In addition, we also employ the Timed PageRank of Yu

et al. [133] as our temporally-sensitive static-rank feature.
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5.4.5 Query clustering features

The query importance I features (in Section 5.2.3) are used to cluster queries and assign

the weights in each corresponding ranking function. We follow the approach taken by

Bian et al. [19] and used the η top-ranked documents returned by a reference ranker

(BM25 [107]) to generate our clustering features. We set the value of η to 15 in all our

experiments. Once the pseudo-feedback documents are gathered, we compute the average

value of each ranking feature over them and use the final mean value as a clustering feature.

The feature importance is computed by training a reference RankSVM model for hybrid

NDCG (γ = 0.5) on the training data sets.

5.5 Experimental Results

5.5.1 Introduction

So far we presented a learning to rank system framework, in which we leverage the freshness

and relevance of search results, adaptive to queries’ temporal characteristics in Chapter 5.

We presented the evaluation platform which enables we conduct comparable experiments

in Chapter 5.4. In this chapter, we focus on the evaluation of our proposed system

framework. To do this, we ask the following research questions:

• How sensitive are the learned rankers to queries’ temporal characteristics? Is it a

good solution to train separate rankers to queries with different temporal character-

istics? If not, which drawbacks are we able to mitigate?
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Table 5.6: Non-temporal ranking features used by RankSVM in the CS-DAC framework
and baseline methods. Body, title, heading and anchor-text fields are respectively repre-
sented by B, T, H and A.

Feature name Feature description

Okapi(B) Okapi BM25 score [107] for body-text.
RQT(B) Ratio of covered terms in body-text.
RQT(H) Ratio of covered terms in heading-text.
LM.JM(B) body-text language modeling (Jelinek-Mercer) score [136].
LM.Dir(B) Body-text language modeling (Dirichlet) score [136].
RQT(T) Ratio of covered terms in title-text.
InNum Number of inlinks.
TF(B) Term frequency in body-text.
AvgNTF(B) Average normalized TF in body-text.
LM.JM(T) title-text language modeling (Jelinek-Mercer) score.
STFIDF(H) Sum of term TFIDF in heading-text.
NumQT(A) Number of covered terms in anchor-text.
MaxNTF(B) Maximum normalized TF in body-text.
PR PageRank score [23].
AvgNTF(T) Avgerage normalized TF for title-text.
LM.Dir(T) title-text language modeling (Dirichlet) score.
MxTFIDF(T) Maximum term TFIDF in title-text.
MaxNTF(T) Maximum normalized TF in title-text.
LM.Dir(H) heading-text language modeling (Dirichlet) score
MaxTF(T) Maximum query term frequency in title-text.
ATFIDF(T) Average term TFIDF in title-text.
AvgTF(T) Average query term frequency in title-text.
SumTF(T) Sum of term frequency in title-text.
LM.JM(H) heading-text language modeling (Jelinek-Mercer) score.
L(B) Body-text length.
AvgTF(H) Average query term frequency in heading-text.
SumTF(H) Sum of term frequency in heading-text.
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• CS-DAC: How superior is our system framework CS-DAC to baselines? How much

benefit can we gain from each individual system component? Under what circum-

stances can we optimize relevance and freshness together? How much can we benefit

from this for temporal and non-temporal queries respectively?

• As an extension of the second question, what are the best ways of optimizing multiple

ranking criteria under the circumstances that these criteria may correlate in different

ways?

In the remaining parts of this chapter, we explore these questions one by one.

5.5.2 Baseline Comparison

We start by comparing a set of baseline approaches, focusing on the first research question.

Comparison among these baselines aim to explore (1) the sensitivity of ranking models

with respect to queries with different temporal characteristics; and (2) whether optimizing

for freshness and relevance can improve search quality on both of them. We then compare

these baseline approaches with our CS-DAC in Section 5.5.4.

5.5.3 Baseline Approaches

These baseline approaches are as follows.

• Single ranker (SinR).

• Separate ranker training and selection (SepR).
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• Over-weighting model [50].

• TopicalSVM [19].

In SinR, we train a single RankSVM ranker with all features. This could be regarded as

a weak baseline that has no form of query categorization, and has been shown to perform

more poorly than the other baselines in previous work [19, 62]. Nevertheless, we report

its results because it represents one of the most common learning to rank architectures.

The SepR baseline is representative for the family of query-dependent loss function

methods [19, 20, 62], in which the loss function is determined according to the tempo-

ral aspect of the query. Separate RankSVM rankers are trained for temporal and non-

temporal queries, and each query is tested on the correct ranker for its type. Note that

using the correct query type information—which is generally unavailable without manual

effort—means that the performance numbers for this baseline are unaffected by potential

query type misclassification, and therefore are overstated.

Dong et al. [50] investigated several techniques for ranking optimization with imbal-

anced amount of training data for freshness and relevance. Among their methods the

over-weighting approach was most effective. The over-weighting model combines relevance

and freshness labeled data to train a single ranker. This is similar to SepR except that the

training pairs of the criterion with fewer labels are over-weighted. Dong et al. [50] used

GBrank [138] as their ranking model. However, we modify the over-weighting loss function
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to RankSVM for consistency with the other methods in our experiments as follows:

arg min
ω,ξq,i,j

1

2
‖ω‖2 + C

∑

q,i,j

ξq,i,j subject to (5.18)

∀yqi � yqj :
{ α

NT
ωTXq

i ≥ α
NT

ωTXq
j + 1− ξq,i,j q ∈ QT

1−α
NN

ωTXq
i ≥ 1−α

NN
ωTXq

j + 1− ξq,i,j q ∈ QN

∀q∀i∀j : ξq,i,j ≥ 0

where QT and QN denote the sets of queries from Google Trends and MSN query log. NT

and NN are respectively the number of preferential pairs of query-documents in each of

those sets. α is a parameter that controls the balance of Google Trends queries vs. MSN

queries, ranging over [0,1]. ω represents the feature weights within the ranking model.

Our last experimental baseline is TopicalSVM [19] which is the state-of-the-art in the

family of divide and conquer techniques. TopicalSVM trains all rankers using a global

loss function, and does not factorize the query-document importance U in contrast to

CS-DAC.

We investigate the performance of these baseline approaches when trained for one of

four optimization goals:

1. Relevance (Rel): The baselines are trained using relevance labels only.

2. Freshness (Fre): The baselines are trained using freshness labels only.

3. Hybrid labels (Hyb): The baselines are trained using hybrid labels (Equation 5.3).
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4. Demoted labels (Dem): Dong et al. [50, 51] suggested demoting the the relevance

grades of outdated documents. They suggested that if a document is somewhat

outdated, then its relevance label should be demoted by one grade. For totally

outdated documents the relevance labels are demoted by two grades. We followed

the same strategy to compute our demoted labels. In essence, this is a special case

of hybrid labeling.

The final results of each optimized ranker are evaluated separately for freshness and

relevance using NDCG with corresponding labels. In all our experiments we run 5-fold

cross-validation in which the first three folds are used for training, and the remaining two

folds are used for validation and testing. The number of ranking functions (clusters) in CS-

DAC and TopicalSVM to are set to three (k = 3), since preliminary results demonstrate

CS-DAC and TopicalSVM perform the best when k = 3 and k = 4 (slightly outperforms

the case when k = 3) respectively.

Performance Comparison

Figure 5.5 shows the performance of baseline techniques on the non-temporal query set

(sampled from the MSN logs). As expected, when evaluating using the relevance la-

bels (yR), it is more effective to optimize for relevance (Rel) rather than freshness (Fre).

Similarly, optimizing for freshness produces results that have better NDCF values. The

methods optimized for demoted (Dem) and hybrid (Hyb) labels consistently outperform

those that are optimized for either freshness or relevance. The results also suggest that
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(a) Relevance labels (yR)

(b) Freshness labels (yF )

Figure 5.5: Ranking performance of baseline systems on relevance (top) and freshness
(bottom) for the non-temporal query set. Error bars are the standard deviations of per-
formance across five cross-validation folds.
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(a) Relevance labels (yR)

(b) Freshness labels (yF )

Figure 5.6: Ranking performance of baseline systems on relevance (top) and freshness
(bottom) for the temporal query set. Error bars are the standard deviations of performance
across five cross-validation folds.
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our hybrid labels are better for improving both relevance and freshness compared to the

demoted labels of Dong et al. [50, 51]. Among the baselines, SinR has overall the

poorest performance which is consistent with previous observations [20]. TopicalSVM,

over-weighting and SepR show similar effectiveness while the latter might be considered

marginally better—not surprising given that we use correct query type information in

SepR.

We repeat the analysis on the temporal query set and the results are illustrated in

Figure 5.6; as in the previous experiment, SinR has the lowest performance on both sets

of labels while the other methods show similar effectiveness. Compared to the experiments

on the non-temporal query set, there is less variation in performance when optimized for

different types of labels. Our investigations revealed that this is due to high correlation

between relevance and freshness labels on the temporal set. The Pearson’s correlation be-

tween relevance and freshness labels on the temporal query set is 0.912±0.004, statistically

significantly higher than 0.429 ± 0.021 for the non-temporal set.

Based on the summarized results, we choose hybrid labels for training rankers for

investigating the following research questions. We also drop SinR as it consistently showed

inferior effectiveness compared to all other methods.

5.5.4 CS-DAC: Performance Comparison

We now focus on the second research question, investigating the effectiveness of CS-DAC.

We start by comparing it with baselines approaches, in terms of freshness and relevance of

140



www.manaraa.com

5.5. EXPERIMENTAL RESULTS

Table 5.7: Freshness comparison on the temporal (top) and non-temporal (bottom) query
sets. All methods are trained using the hybrid labels and the evaluation is based on the
freshness ratings (yF ). Symbols †, §, and ‡ respectively denote statistically significant
differences according to a single-tailed student t-test (p − value < 0.05) over the SepR,
TopicalSVM and Over-weighting baselines.

Temporal Queries (Google Trends)
NDCF1 NDCF3 NDCF5 NDCF10

SepR 0.378 0.360 0.372 0.408
TopicalSVM 0.365 0.355 0.365 0.402
Over-weighting 0.340 0.348 0.363 0.404
CS-DAC 0.398‡ 0.364 0.376 0.411
CS-DAC(U) 0.416†§‡ 0.379‡ 0.388 0.400

Non-Temporal Queries (MSN logs)
NDCF1 NDCF3 NDCF5 NDCF10

SepR 0.348 0.411 0.434 0.475
TopicalSVM 0.355 0.408 0.430 0.485
Over-weighting 0.335 0.408 0.434 0.480
CS-DAC 0.427†§‡ 0.454†§‡ 0.473†§‡ 0.510§‡
CS-DAC(U) 0.452†§‡ 0.466†§‡ 0.488†§‡ 0.527†§‡

search results. We next explore the effectiveness of each individual component of CS-DAC.

Comparative Performance on Freshness

We use NDCG with freshness yF labels (NDCF [51]) to compare the performance of CS-

DAC with the baselines on both temporal (Google Trends) and non-temporal (MSN logs)

query sets. We report the results for CS-DAC in the presence and absence of the query-

document importance factor (U) described in Equations 5.4 and 5.9. We respectively refer

to these two versions as CS-DAC(U) and CS-DAC.

Table 5.7 includes the NDCF results on both query sets. The over-weighting baseline

performs worst. This is not surprising given that over-weighting is originally designed

for scenarios with imbalanced training data [50], and the fact that it does not leverage
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any type of query classification or clustering. Consistent with the observations in the

previous section, SepR and TopicalSVM produce similar results on the temporal queries,

while they are both outperformed by CS-DAC. Introducing the U factor leads to further

improvements in performance particularly at higher cutoffs. On non-temporal queries,

TopicalSVM and SepR and over-weighting show similar effectiveness while CS-DAC con-

sistently outperforms all baselines significantly. It is interesting to observe that CS-DAC

improvements over the baselines are larger on the non-temporal query set. This can be

explained by two reasons: (1) the documents returned for temporal queries tend to be

fresher on average than those returned for the non-temporal ones, and (2) the high cor-

relation between relevance and freshness labels in this set leads to more effective learning

by reducing impact of potential noise in clustering and hybrid labels.

Comparative Performance on Relevance

We run a similar analysis, and compare the NDCG values of different techniques as mea-

sured by the relevance labels (yR) in Table 5.8. For non-temporal queries, the CS-DAC

results are marginally better than the baselines, although none of the differences are statis-

tically significant. On the temporal query set, SepR has the edge over the other baselines

while CS-DAC outperforms the three of them at all cutoff values. Adding the U factor

significantly improves the results for NDCG@1 and NDCG@10. As in the NDCF numbers

on this query set, the NDCG values could be also affected by the high correlation between

freshness and relevance.
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Table 5.8: Relevance comparison on the temporal (top) and non-temporal (bottom) query
sets. All methods are trained using the hybrid labels and the evaluation is based on the
freshness ratings (yR). Symbols †, §, and ‡ respectively denote statistically significant
differences according to a single-tailed student t-test (p − value < 0.05) over the SepR,
TopicalSVM and Over-weighting baselines.

Temporal Queries (Google Trends)
NDCG1 NDCG3 NDCG5 NDCG10

SepR 0.373 0.359 0.375 0.411
TopicalSVM 0.342 0.354 0.365 0.408
Over-weighting 0.355 0.351 0.368 0.411
CS-DAC 0.385 0.365 0.377 0.417
CS-DAC(U) 0.401†‡ 0.375 0.389 0.426†

Non-Temporal Queries (MSN logs)
NDCG1 NDCG3 NDCG5 NDCG10

SepR 0.481 0.517 0.532 0.562
TopicalSVM 0.490 0.508 0.521 0.566
Over-weighting 0.476 0.510 0.538 0.570
CS-DAC 0.493 0.520 0.541 0.574
CS-DAC(U) 0.509 0.522 0.541 0.574

Deeper Analysis

We showed that our CS-DAC method could significantly improve both freshness and

relevance of the results compared to state-of-the-art baselines in Section 5.5.4 and 5.5.4.

In this section, we investigate the impact of random walk smoothing in improving the

query-document factor U for training. We also compare CS-DAC and the baselines in

terms of hybrid NDCG by assigning various weights to relevance and freshness. Finally,

we report the most effective features according to our experiments for ranking temporal

and non-temporal queries.
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Smoothing query-document importance We described earlier how original query-

document importance values can be smoothed by random walk, where the probability d

of random jumping can be tuned during training and validation. Figure 5.7 shows how

choosing different fixed values for d may affect the results. On the non-temporal query

set, different degrees of smoothing have little advantage over no smoothing (d = 0). On

the temporal query set however, random-walk helps to smooth inter-label dependencies,

and hence improves the results on both freshness and relevance.

Hybrid labels for evaluation In Section 5.5.2 we showed that training for hybrid

NDCG (γ = 0.5) was effective for improving both freshness and relevance. Here, we

provide the evaluation results on hybrid NDCG, the metric we used for optimizing the

ensemble ranking. Although we used γ = 0.5 for training, we report the evaluation results

for different values of γ in Figure 5.8 to account for scenarios where freshness and relevance

are weighted differently. The results are consistent with our previous experiments; CS-

DAC outperforms the baselines, and the weighting between freshness and relevance is less

important for temporal queries. Increasing the γ value grows the overall hybrid NDCG

almost monotonically because the relevance-based NDCG values are generally greater

than those computed based on the freshness labels. It is worthwhile pointing out that

this observation does not suggest that ranking performance benefits the most when only

optimizing for relevance.
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Feature Group Rank Feature Importance

Slp(*) 32.00 ± 11.94 22.77 ± 8.20
Amp(*) 38.83 ± 18.68 21.67 ± 20.06
Rp(*) 26.33 ± 9.60 26.86 ± 7.01
Cs(*) 47.83 ± 10.66 11.17 ± 7.00
Cr(*) 50.08 ± 11.96 9.53± 8.49

Table 5.9: Feature study for TempQueries (Rank ∈ [1, 64], Feature Importance ∈ [1, 100]).

Feature Group Rank Feature Importance

Slp(*) 55.16 ± 2.91 4.14± 1.04
Amp(*) 28.66 ± 8.25 14.05 ± 2.58
Rp(*) 37.33 ± 15.61 10.85 ± 5.73
Cs(*) 52.5 ± 6.31 5.16± 2.63
Cr(*) 44.08 ± 15.52 8.07 ± 5.9

Table 5.10: Feature study for NonTempQueries (Rank ∈ [1, 64], Feature Importance ∈
[1, 100]).

Feature Analysis CS-DAC relies on several temporal and non-temporal features for

query clustering and document ranking. We examined all cross-validation folds to find

the features that are assigned with highest weights during training. Among the temporal

features, the confidence values for the seasonality CS(τ), and regularity Cr(τ) of STL de-

compositions were generally the most effective. Furthermore, the features generated from

the time-series decomposition of changes in anchor-text and inlinks were more successful

than those similarly produced based on other fields (e.g., title, body, heading).

Among the non-temporal features, BM25 and language modeling scores had the highest

weights and were most effective when computed over the body and title text. We report

the ranks and the importance (the normalized version with the sum equal to 100) of each

group of time series based features within the whole feature set in Tables 5.9 (temporal

queries) and 5.10 (non-temporal queries) respectively.
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(a) Temporal queries (b) Non-temporal queries

Figure 5.7: The impact of changing the random jump probability d during smoothing of
the query-document importance values U . The results are evaluated on temporal (left)
and non-temporal (right) queries using both relevance and freshness labels.

5.5.5 Multiple Ranking Optimization

To answer the third research research question, we now focus on investigating how the

gain of bi-criteria ranking optimization varies with the bi-criteria correlation and the

optimization capability. To avoid data bias, we conduct experiments on two data sets.

We use syntactic data to simulate the process in which pairwise ranking models gen-

erate search results. Our dataset consists of 21 subsets, with each composed of 1000

simulated bi-criteria rating scores that have a fixed score correlation from -0.9 to 0.9 with

a step size 0.1. Three pseudo-classifiers (i.e., simulated rankers) are used to generate pref-

erential score pair relationships based on each aspect of bi-criteria (i.e., producing baseline

results) and the hybrid labels in Section 5.3.1 respectively. To incorporate optimization

capability variance, we exploit a probability threshold (ranging from [0.1,0.9] with step
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(a) Temporal queries (b) Non-temporal queries

Figure 5.8: Hybrid NDCG5 values for different values of γ (in Equation 5.12) on the
temporal (top) and non-temporal (bottom) query set. Similar trends were found for NDCG
at different cutoff values.

size 0.1) to control the chance that pseudo-classifiers generate correct pair relationships,

denoted as ranker accuracy. For instance, if the ranker accuracy is 90%, the generated

pair relationship has 90% chance to be consistent with the ground truth. The gain of bi-

criteria ranking optimization is measured by RelImp based on the percentage of correctly

classified preferential score pairs (i.e., RelImp on accuracy).

Figure 5.9 shows the minimum relative improvement on preferential pair classifica-

tion accuracy for MIN and MAX as the bi-criteria correlation and ranker accuracy vary.

Preliminary results demonstrate that the trends of others typically fall in between. The

bi-criteria optimization brings benefits when the bi-criteria correlation is highly positive

and ranker accuracy is low. When the ranker accuracy is high, bi-criteria optimization has

negative impact on performance. It is not surprising given that it actually incorporates

more inaccurate optimization objectives, and this can be mitigated with the increase of

bi-criteria correlation.
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Figure 5.9: The minimum relative ranking improvement on accuracy based on MIN and
MAX hybrid labels under the variance of bi-criteria correlation and ranker accuracy.

To further investigate the effect of bi-criteria ranking optimization on real search sce-

narios, we conduct the comparable experiments on our evaluation platform. Given the

freshness and relevance have stronger positive correlation for temporal queries, rather than

non-temporal queries, the relative ranking improvements are compared based on these two

types of queries.

Figure 5.10 shows the average and standard deviation of RelImp on DCG@3 [71] across

five fold cross-validation for temporal and non-temporal query sets respectively. By using

the different top k% effective ranking features that are selected by a reference model (a

RankSVM model in this work) based on training data, we incorporate the influence of

ranker effectiveness into the sensitivity study on the gain of bi-criteria ranking optimiza-

tion. The results confirm our previous observations on simulated data and demonstrate
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Figure 5.10: The average and standard deviation of RelImp on DCG@3 across five folds
for the temporal (top) and non-temporal (bottom) query sets by using the top 25%, 50%,
75% and 100% (all) effective ranking features. (AM: arithmetic mean; GM: geometric
mean; HM: harmonic mean; MAX: maximum; MIN: minimum; QM: quadratic mean.)

that (1) RelImp is more sensitive to hybrid labels and ranker effectiveness when the cor-

relation between relevance and freshness is highly positive (i.e., the temporal query set);

and (2) bi-criteria ranking optimization can bring more benefits under highly positive

bi-criteria correlation.

149



www.manaraa.com

5.6. SUMMARY

5.6 Summary

From Chapter 5 to Chapter 5.5, we proposed a learning to rank approach (CS-DAC) for

optimizing for relevance and freshness simultaneously, built an evaluation platform, and

showed the effectiveness of CS-DAC on it. We extended the state-of-the-art in divide

and conquer ranking [20] by adding two new key elements; first, instead of optimizing

for relevance labels, we generated and used hybrid labels based on relevance and fresh-

ness grades. Second, we introduced a new query-document importance factor (U) that

allows each ranker to set different importance to relevance and freshness. Compared with

traditional metasearch engines, divide-and-conquer ranking frameworks generate merged

ranking lists on the model level instead of the result level. It enables automatic identifi-

cation of effective ranking features for individual type of queries. Our experiments on a

large web archive demonstrated that CS-DAC can improve both relevance and freshness

compared to existing baselines.

We studied the correlation between relevance and freshness grades, and its implications

on the training effectiveness. Our results revealed high correlation between relevance and

freshness labels in temporal queries, suggesting that the choice of document labels is less

important for training on that set. We modeled document importance by the likelihood

of visiting each unique hybrid label, and surprisingly found that it can improve ranking

performance, especially for temporal queries. However, in what way that such document

weighting strategies influence ranking performance is still unclear. We will leave it as
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future work.

Our work can be considered as the simplest form of multi-objective (multiple-criteria)

optimization [115], where multiple objective functions (freshness, relevance) are combined

to form a single optimization goal (hybrid labels). These kinds of aggregated functions

require the weight of each objective to be known in advance (γ in our case), and are

incapable of finding all optimal solutions. Deploying more sophisticated multi-objective

optimization techniques may lead to more significant improvements in relevance and fresh-

ness. Further work includes adopting other learning to rank architectures such as boosted

decision trees [125] for multi-objective optimization of freshness and relevance.
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Conclusions and Future Work

So far we have presented how we incorporate the information of web dynamics into three

search components, i.e., anchor text representation enhancement for retrieval, web author-

ity estimation, and machine learning based ranking systems from Chapter 3 to Chapter 5.

In this chapter, we conclude this dissertation. We start by recapping the threads of this

dissertation, and then focusing on each individual part, we present its impact on other

research directions or industry applications. We next analyze the deficiencies of this dis-

sertation. We end by suggesting a few future research directions.

6.1 Recapitulation

The collective activities from billions of web users result in a dynamic web. The creation,

revision and removal of web pages and hyperlinks characterize human’s daily lives, suggest

the authority and value of user-generated content, and reflect the temporal properties of
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users’ information needs expressed through queries. Unfortunately, it is widely believed

that the current commercial search engines fail to utilize much historical information con-

cealed in web dynamics when generating document rankings for answering user queries [3].

Therefore, the purpose of this thesis is to explore effective ways of utilizing web dynamics

to improve search quality. Given that query temporal characteristics imply the impor-

tance of search freshness on users’ satisfaction, we emphasize the freshness and relevance

of search results in the scope of this thesis.

In Chapter 3, we proposed an anchor text weighting strategy to enhance the represen-

tation of page content for improving search relevance. The essential idea is to aggregate

anchor text weights at different time points, and this enables the state of anchor text

(and its associated hyperlinks) at different time periods to influence each other. We ob-

served that such a stabilized anchor text representation effectively improves the relevance

of search results compared with the one only based on a single web snapshot.

Enlightened by the practical success of smoothing anchor text weights at different time

points for anchor representation, we consider whether it also helps other applications that

depend on analyzing the link structure. Web authority estimation is one such applica-

tion. In Chapter 4, we proposed a temporal random surfer model for estimating web

authority. This approach allows authority flows to distribute between web snapshots at

different time points, and so the link structure at different time periods mutually influ-

ence the final estimation of web authority. The advantage is that the approach mitigates
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the deficiency that traditional web link analysis approaches unfairly favor old pages. Ex-

perimental results demonstrate that this approach is superior to the representative link

analysis method—PageRank, and several state-of-the-art link-based algorithms that in-

corporate temporal information of web pages and hyperlinks, in terms that it significantly

improves the freshness of search results without hurting search relevance for temporal

queries.

Observing that both freshness and relevance can improve over baselines for tempo-

ral queries, we consider the interrelationship between freshness and relevance. Is there a

positive correlation between the two ranking criteria? If so, is that correlation sensitive

to query types? If so, can we utilize the correlation between freshness and relevance in

optimizing ranking functions? These questions motivate the work of learning to rank for

freshness and relevance, in which freshness and relevance are simultaneously optimized

depending on queries’ temporal characteristics. We present the design, implementation

and evaluation of this system in Chapter 5. The observation is that freshness and rel-

evance have high positive correlation with each other for temporal queries, but not for

non-temporal ones. When optimizing freshness and relevance, adapting their trade-off

according to queries’ temporal characteristics, performance on both ranking criteria im-

proved significantly.
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6.2 Impact

We recapped the main parts of this dissertation, and now present the impact of our work

on other research directions and/or industry applications.

Mining anchor text trends for retrieval. We proposed an anchor text weighting

strategy that depends on the creation time of hyperlinks. The idea of propagating anchor

weights over the time axis, letting such influence decay over time, has been shown effective

for improving the field retrieval model BM25F in our experimental settings. While we focus

on anchor text representation, a similar idea can be extended to other applications. The

essential reason is that anchor text provides information complementary to target web

pages, and these are reasonably viewed as part of the target page content.

• In professional search (such as people search in LinkedIn), the attributes of a person’s

profile at different time points, e.g., membership in an organization one year ago or

five years ago, may influence her relevancy with respect to that organization. A

“decayed” profile may better represent her characteristics.

• In academic search (such as finding the most influential researchers), the publication

time affects the estimation on how active a researcher is, given a specific querying

time. Decayed importance on older papers helps better quantify researchers’ activity,

when we use their publications to characterize them.

• In product rating systems (such as Amazon’s product review system), customers
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usually refer to previous comments and ratings first, and then proceed with their

purchase, and then optionally leave their own comments and/or ratings. Empha-

sizing more recent comments or ratings but demoting much earlier ones (e.g., three

years ago or five years ago) helps better represent the preference of customers at the

current time period.

• In microblog search (such as Twitter search), users typically generate consistent

posts or tweets in terms of their topicality and/or polarity. Therefore, when utilizing

such consistent content to enhance the representation of a target post or tweets, it

is reasonable to demote temporally farther content more than temporally closer

content.

This approach has the potential to be applied into real-world IR systems. Recall that the

approach includes three steps. The time complexity of computing the anchor text weights

for target pages within multiple snapshots (the first step) is O(Npe), where Np is the

number of past snapshots, and e is the number of edges. The time complexity of predicting

future anchor text weights (the second step) is O(Nfa), where Np is the number of future

snapshots, and a is the number of unique anchor-document pairs. The time complexity of

anchor weighting propagation (the third step) is O(Na), where N = Np +Nf is the total

number of snapshots. Practically, commercial search engines crawl the web periodically,

roughly less than one month per crawl. Each time when the newest version of the web is

achieved, we first perform compute the anchor weights based on the current step (O(Npe)),

and then update the prediction of future anchor weights (O(Nfa)). We finally update the
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influence from anchor propagation (O(Nfa)). Thus, the proposed approach is no more

cumbersome than existing efforts.

Incorporating web freshness into page authority estimation. We proposed a

temporal random surfer model for estimating web page authority. It incorporates web

maintenance activities into web freshness, controlling the distribution of authority flows

between pages. It mitigates the deficiency that traditional link based ranking algorithms

favor old pages. In addition to the web search domain, a similar idea also inspires other

research areas.

• In social network analysis, the importance of social players is typically estimated

from their past activities. When quantifying how much a social player influences

others, her interaction with others serves as an evidence of her importance. Em-

phasizing more recent interactions but demoting earlier ones (i.e., emphasizing the

“freshness” of social interactions) helps better estimate social player importance.

• In publication search (such as finding the most influential papers), the importance of

a paper is usually indicated by its citation number without taking into account when

this paper was published. Decaying the influence of older citations but promoting

the contribution from more recent ones (i.e., emphasizing the “fresher” citations)

tends to provide more reasonable publication importance estimation.
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• In computational advertising, one important problem is to target potential buy-

ers. Researchers usually draw from analyzing users’ past on-line activities. Espe-

cially, the transitions between diverse types of activities (e.g., browsing→carting,

carting→purchasing) have different contributions on inferring users’ purchase in-

tent. In addition, the time points at which these transitions occur also significantly

influence users’ purchase prediction. Emphasizing the critical activity transitions

within more recent time periods (e.g., emphasizing the “freshness” of activity tran-

sition) is likely to improve the prediction accuracy.

The approach has the potential to be applied in real-world search engine systems. First,

the influence of web maintenance activities between successive time points is accumulated

with the time complexity O(e) (in-link freshness) and O(n) (page freshness) respectively,

where e (n) is the number of edges (pages) per snapshot. Second, the incremental in-link

and page freshness by considering propagation has the time complexity O(Ne) if we utilize

the power iterative method, where N is the number of iterations before the convergence,

e is edge number per snapshot. Third, the accumulative web freshness scores are then

computed with the time complexity O(n). These three steps can be done periodically per

several crawls. Fourth, once we achieve the page and inlink freshness for all the pages

at all time points, we next operate a temporal random surfer model, computing (1) the

probability that a web surfer reaches one page, with the time complexity O(NTN ′e); and

(2) the expectations of the surfer staying on one page, with the time complexity O(TN ′n).

T is the number of snapshots within a temporal window, N ′ is the number of snapshots,
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n is the number of pages per snapshot, and N is the number of iterations before the

convergence assuming we use the power iterative method. Thus, the scale of data, i.e., the

nodes and hyperlinks, processed by our proposed approach is approximately proportional

to the number of snapshots, when compared with existing efforts that only utilize one (the

current) web snapshot.

Learning to rank for freshness and relevance. We proposed a learning to rank

system that optimizes freshness and relevance, adapting to queries’ temporal characteris-

tics. We observe that (1) temporal and non-temporal queries have different correlations

between freshness and relevance; and (2) the benefits from optimizing bi-criteria depend

on the correlation between these two criteria. While our system is proposed for ranking

web documents, the ideas that involve optimizing for multiple criteria and building up

adaptive learning systems can be extended beyond web search.

• In news search, freshness of search results is especially important. For each query,

the correlation between freshness and relevance is sensitive to the time points at

which users issue queries. While not a real-time system, our prototype helps handle

the queries with diverse freshness-relevance correlation in an adaptive way.

• In information filtering and recommender systems, users rate items based on mul-

tiple criteria. These criteria correlate with each other depending on user profiles.

Optimizing multiple criteria adaptive to users potentially benefits the prediction

models of users’ overall preferences on items.
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• In search advertising, ad rankers are driven to optimize for revenue. However, over-

optimizing for revenue hurts users’ search experience, and so does harm to the rev-

enue in the long term. Therefore, leveraging the trade-off between (short-term)

revenue and users’ search experiences in training ad rankers is not a trivial task and

can potentially benefit from our system.

The approach can be applied in real-world web search systems. The time complexities in

training and test stages are different. While the time complexity of the SVM algorithm

depends on the actual technique for solving the quadratic convex optimization, it is well

believed that the typical complexity of SVM is O(n2m), where n is the number of training

instances, and m is the number of features. Here, our instances are preferential query-

document pairs. For each ranker, the trade-off between freshness and relevance is learned

using line search, and so the time complexity of our approach in training stage is about

O(Nkn2m), where N is the number of rankers, and k is the number of trials within line

search. In the test stage, the time complexity is linear with the feature size.

6.3 Caveats

We presented the impact of this dissertation; we now analyze the limitation and deficiencies

of the dissertation projects respectively.

Mining anchor text trends for retrieval. While we empirically demonstrated that

our proposed anchor text weighting strategy can enhance the baseline only using a single
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web snapshot, our method may suffer from the following limitations.

• We model the influence of hyperlink creation on anchor weighting. Other types of

maintenance activities on hyperlinks, such as update and removal, are inevitably not

modeled due to our experimental conditions, i.e., based on the current snapshots, we

track backwards within the archival corpus to figure when each individual hyperlink

was created. These additional activities could be very helpful.

• The existing archival web pages only cover a small portion of the historical web,

which causes a large amount of missing anchors (only 2.57% anchors have archival

copies in our data set) and thus limits the application of our proposed method. This

also suggests a limitation to the usefulness of external archival web resources with

respect to current search engines.

• The crawling policies used to collect the archival web page copies might not accu-

rately record the history of web activities. For example, the updates of web pages

are more frequent than crawling frequency. Therefore, inaccurate web maintenance

activities may do harm to the accuracy of our proposed models.

One may consider how adversaries can utilize the proposed approach to hurt ranking

performance. We argue that this approach is robust in the sense that anchor text weights

are influenced by a series of their states on anchor text popularity and link structures in

the past. One possible weakness is that we use linear regression for modeling the trends of

anchor text weights over time in this work. Adversaries might consider changing the ways
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at which anchor weights for certain pages evolve. In addition, the evolution of anchor

weights in general may be dynamic, i.e., it may be sensitive to the time periods, given

that the motivation and behaviors of web creators maintaining web content may evolve

over time. Therefore, the effectiveness of our approach may suffer from the inaccurate

modeling on anchor weights.

Incorporating web freshness into page authority estimation. While the eval-

uation demonstrates that our proposed temporal random surfer that incorporates web

freshness outperforms state-of-art link-based ranking algorithms, our approach may suffer

from the following deficiencies.

• The crawling frequency influences the accuracy of web maintenance activities. In

this work, we processed the corpus by removing pages with fewer than 5 snapshots.

This reduces the size of our corpus from 158M unique pages to 3.8M unique pages.

Even so, the historical copies of web pages are still sparse given that the time span

is from January 2000 to April 2007, with month-based granularity. Therefore, the

inaccurate web maintenance activities may do harm to the accuracy of our proposed

models.

• The judgments on freshness for temporal queries may not be accurate. We choose

to use April 2007 as our interested time point for ranking evaluation. We face the

following difficulties: (1) human judges may not be able to remember the events

closest to our interested time point, given that April 2007 is far from now; (2)
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the unclear definition of freshness, i.e., it can be either how freshness the content

recorded on the page is or how recent the last modified time is by page maintainer,

etc.; (3) it is hard to obtain the freshness judgments for the web pages that do not

contain an obvious time clue.

One may consider how adversaries can utilize the proposed approach to hurt ranking

performance. We realized that our approach has the risk of promoting link spam. The

in-link activities boost the in-link freshness of web pages, and so the search systems tend

to favor the pages whose in-link popularity increases suddenly. As a result, the pages

with link spam may be promoted. However, we also quantify another aspect within web

freshness, i.e., page freshness, from the activities on the pages themselves and their out-

going linked web resources. We use the correlation between page and in-link freshness as

a confidence to indicate the probability of the search systems favoring certain web pages,

and so mitigate the negative effect from the potential link spam to some extent. Even so,

it is worthwhile pointing out the risk of our approach on promoting link spam.

Learning to rank for freshness and relevance. While our proposed learning to rank

system that optimizes freshness and relevance adaptive to queries’ temporal characteristics

can improve ranking performance on both freshness and relevance for queries with diverse

temporal characteristics, it may suffer from the following deficiencies.

• The judgments on freshness for non-temporal queries may not be accurate. First, it is

hard to build up a quantitative connection between users’ search experience and the
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freshness of search results, i.e., the importance of freshness for non-temporal queries

is doubtful. Second, the web pages for answering non-temporal queries typically do

not contain time-sensitive information, and so how to rate the freshness score for

these pages is still a controversial question in the research community.

• The granularity of temporal queries: we separate the queries used in ranking evalu-

ation into temporal vs. non-temporal ones. The main criterion for temporal queries

is whether there exists burstiness when keeping track of query popularity within

search logs after 2008. Finer-grained query temporal characteristics is neglected,

e.g., whether queries are seasonal or breaking-news, etc.

• Our methodology operates on the assumption that queries’ temporal characteristics

are differentiable. Representative research papers did demonstrate that commercial

search engines are capable of classifying queries according to their temporal charac-

teristics. Chien and Immorlica [32] suggested the similarity between search queries

can be better inferred from the correlation between their query volume. Following

this spirit, a few research works have been proposed to benefit search applications.

Alfonseca et al. [4] used query temporal similarity to improve the applications of both

query suggestion and query categorization. Shokouhi and Radinsky [114] predicted

the future query frequencies to benefit query auto-completion systems. Jones and

Diaz [74] classified queries according to their temporal distributions using the times-

tamps of pseudo-feedback documents, and suggested that the queries with different

temporal characteristics indicate their diverse search difficulty.
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• Our data-oriented assumptions may be too strong. We assume that (1) queries’

temporal characteristics is long term, i.e., whether a query is temporal or non-

temporal is consistent before and after 2008; and (2) queries’ temporal characteristics

are not sensitive to location, given that the archival web corpus is in .ie domain

and the search log is US based.

6.4 Future Work

We reviewed the limitations and deficiencies of this dissertation; in this section we suggest

a few future directions. These directions fall into two categories: (1) improving web search

systems and search quality; and (2) analyzing web dynamics to benefit the applications

of social media.

Improving Search Systems. Future work that aims to improve search systems in-

cludes:

• The connection between search freshness and users’ satisfaction. Freshness

has been recognized as one of the important facets within search quality, especially

for temporal queries. How important search freshness is for a given query, when

compared with relevance, is sensitive to the time points at which users issue that

query. This suggests that when connecting users’ search satisfaction with the fresh-

ness of search results, the strength of their connection depends on queries’ temporal
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characteristics. For now, how much emphasis we should put on freshness in quanti-

fying users’ satisfaction, and how to determine the relative importance of freshness

for each query, are still open questions in the research community.

• Collecting groundtruth: click-through data versus freshness judgments.

Freshness judgements are difficult to obtain. First, freshness scores of web pages

for answering a given query is sensitive to our time point of interest for conducting

ranking evaluation. It is difficult to gain large scale freshness judgments in very short

time periods. Second, the interpretation of page freshness is sensitive to topicality

of page content. For example, a three-day-old story that keeps track of a tsunami

is stale, while the week-old report introducing a recently appointed school president

is still fresh. Based on the above two reasons, commercial search engines mine the

click-through rates of URLs from search logs more often, and use that to guide

the groundtruth that indicates the overall relevance of query-document pairs (i.e.,

assume the click-through implicitly conceal users’ overall preference, leveraging all

search quality facets). Its advantage is that it is cheap to gain large-scale groundtruth

in a prompt manner, and so more convenient to keep track of how users’ preference

drifts over time. However, it also has its deficiencies, i.e., the position biases prevents

one from objectively interpreting users’ preference, since users are inclined to click

the URLs at the very top positions. The comparison between these two ways of

collecting ranking groundtruth suggests that (1) freshness judgments potentially

enables us to investigate finer-grained search quality facets and how these facets
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interact with each other, and how such interaction evolves over time; (2) click-

through data enables us to achieve large-scale groundtruth in a prompt way, but may

suffer from the deficiency of position bias; in addition, the finer-grained search quality

facets are not differentiable. Therefore, the future work might consider interpreting

the ranking evaluation by using the groundtruth from different sources, and how

they complement each other. In the worst case, when ranking evaluation results by

using these two ways for collecting groundtruth contradict each other, how we can

interpret the superiority of the compared ranking algorithms, etc.

• On-line ranking functions and temporal ranking features. The freshness

judgements on query-document pairs are sensitive to time points at which users issue

queries. This suggests two possible directions of improving ranking performance: (1)

training an on-line ranker that updates in real-time, leveraging the dynamic trade-

off between freshness and relevance; (2) incorporating the temporal features that

characterize the query-document pairs for training on-line rankers in real time.

• Hurt diversity? When only focusing on freshness and relevance, we may inevitably

neglect other ranking criteria, especially diversity which quantifies the richness of

information that can be delivered from a document ranking list. Future work might

investigate whether we could optimize for freshness and relevance, but at the same

time leverage the diversity of search results.

• Freshness label sparsity. Only around 10% of queries are temporal queries. When
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training the rankers for answering temporal queries, one challenge is that the number

of training instances is not enough to guarantee to train a confident ranker. Future

work following this direction would focus on solving the problem of instance sparsity

in the ranker training process.

Improving Social Media Applications. Social media web sites, such as Twitter,

Facebook, LinkedIn, Myspace, etc., provide a variety of platforms to facilitate web users

to interact with each other. Two representative research directions are social content and

link (connection) recommendation and topical analysis.

• Social content and link (connection) recommendation services provide rec-

ommendations of items, users, or user generated content to web users. Research

work on traditional information filtering and recommender systems only draw from

the similarity between the users profiles and the recommended item candidates,

without considering the recommendation from similar users. Collaborative filtering

(CF) mitigated this problems by referring the preference of similar users. Represen-

tative approaches are matrix factorization and neighborhood based CF. Koren [79]

found that the users’ rating scores drift over time, and so incorporate a temporal

factor into these two representative collaborative filtering approaches, and achieve

significant improvements over the ones without. Nowadays, collaborative filtering

approaches have been shown effective on recommendation tasks in industry. Mod-

eling the dynamics of user interests continues to be an active area for research.
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• Topical analysis of on-line user generated content is one way of understand-

ing users’ trace on the web. Traditional topical models do statistics on term oc-

currence within web documents, without considering the timestamp associated with

documents. Therefore, it is difficult to model topic evolution, which is especially

necessary for frequently updated on-line social media streams, such as Tweets. Re-

search work following this direction aims to design temporal topical models that can

recognize time-sensitive topics automatically, and differentiate the same/very similar

topics within different time periods.
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